2. 安徽九川生物科技有限公司,芜湖 241009;
3. 美国哥伦比亚大学病理和细胞生物学系,纽约 10032
2. Anhui Jiuchuan Biological Technology Co., Ltd., Wuhu 241009, China;
3. Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
干扰素(interferon,IFN)是机体细胞受病毒感染或受核酸、细菌内毒素和促细胞分裂素等作用后分泌的一类广谱抗病毒糖蛋白。其最早作为一种抗病毒因子,由Isaacs和Lindenmann于1957年报道,当时他们发现流感病毒感染的鸡胚能分泌一种抗流感病毒的因子[1-2]。根据IFN的来源和理化性质,可将其分为Ⅰ、Ⅱ和Ⅲ型。Ⅰ型IFN包括IFN-α、IFN-β、IFN-ω和IFN-τ等;Ⅱ型IFN即IFN-γ;Ⅲ型IFN包括白细胞介素28A(interleukin 28A,IL-28A)、IL-28B和IL-29等。IFN-α来源于病毒感染的白细胞,IFN-β由病毒感染的成纤维细胞产生,IFN-ω来自胚胎滋养层,IFN-τ来自反刍动物滋养层,IFN-γ由抗原刺激T细胞产生。Ⅲ型IFN是2003年报道的新的IFN样细胞因子[3]。虽然所有细胞均能产生Ⅲ型IFN,但以粒细胞和浆细胞样树突细胞为主。本文就IFN基因变异、病毒抗IFN策略及不同类型IFN之间的协同/拮抗作用进行综述,以期能更好地理解其抗病毒作用。
1 IFN及其受体Ⅰ型IFN通过诱导自噬参与病毒清除[4],在急性病毒感染过程中起保护作用[5],但在细菌感染和自身免疫性疾病中是否具有保护作用还不确定。Ⅱ型IFN主要在宿主早期抗感染过程中发挥功能,对IFN-α和IFN-β介导的抗病毒活性起放大作用[6]。因此,Ⅰ型和Ⅱ型IFN通常共同作用,激活多种天然和适应性免疫反应,从而参与抗肿瘤免疫和清除病原体感染过程。Ⅲ型IFN的信号转导级联反应与Ⅰ型IFN(IFN-α和IFN-β)非常相似,它们的生物学功能也相似。Ⅰ型和Ⅲ型IFN都有体外抗病毒活性,且在病毒感染细胞中Ⅲ型IFN通常与Ⅰ型IFN同时表达[7]。
经典的Ⅰ型IFN信号通路已于25年前阐明:IFN与受体结合后,激活受体相关Janus激酶1(Janus kinase 1,JAK1)和酪氨酸激酶2(tyrosine kinase 2,TYK2),使信号转导与转录激活因子1(signal transducer and activator of transcription 1,STAT1)和STAT2的酪氨酸磷酸化,磷酸化的STAT1和STAT2形成二聚体并转移入核,与IFN调节因子9(interferon regulatory factor 9,IRF9)结合形成三聚体的IFN刺激基因因子3(interferon-stimulated gene factor 3,ISGF3)。ISGF3与IFN刺激应答元件结合,直接激活IFN刺激基因(interferon-stimulated gene,ISG)的转录。ISG抑制病毒的途径主要有抑制病毒的转录、翻译和核酸复制,降解病毒核酸,改变宿主细胞脂代谢。细胞对IFN与受体结合的反应与细胞类型、所处环境有关,且在免疫反应过程中不断变化。虽然Ⅲ型IFN不使用Ⅰ型IFN受体复合物转导信号,但其最终均激活JAK/STAT信号级联系统[8]。
2 IFN基因变异遗传学或表观遗传学上的变化会影响疾病的易感范围和临床表现,其中包括一些病毒感染引起的疾病。鉴于IFN在机体抗病毒和免疫反应中的作用,不难理解IFN基因或病原体的基因变异可能导致多种疾病发生。近年来有研究显示,IFN相关基因变异可引起病毒感染的临床表现改变。例如,单纯疱疹病毒1型(herpes simplex virus type 1,HSV-1)感染在世界范围内相当普遍,大多数患者无明显症状,但IFN-α/β和IFN-λ信号通路发生基因变异时,HSV1感染会引起单纯疱疹病毒性脑炎(herpes simplex virus encephalitis,HSE)[9]。在HSE患者中,UNC-93B和Toll样受体3(Toll-like receptor 3,TLR3)基因缺失,揭示了依赖UNC-93B的TLR-IFNα、IFN-β和IFN-λ信号通路在抵抗HSV1感染中的作用。另一方面,在TLR介导的IFN诱生途径中,某些分子变异也会通过阻碍IFN合成而降低机体对病毒感染的抵抗力。例如,IL-1受体相关激酶4(interleukin 1 receptor-associated kinase 4,IRAK-4)缺失患者中,TLR7、TLR8和TLR9被激活后,IFN-α、IFN-β和IFN-λ的合成能力受损。
STAT1和TYK2基因变异也会通过影响IFN家族成员的抗病毒作用,导致一些病毒引起更严重的感染疾病[10]。IFN-γ基因缺陷患者会罹患遗传性分枝杆菌易感综合征(mendelian susceptibility to mycobacterial disease,MSMD),其特征是弱致病性的分枝杆菌如结核分枝杆菌疫苗和非结核环境分枝杆菌能引发严重感染。IFN-γ由髓系细胞分泌的细胞因子如IL-12和IL-23诱导分泌,IL-12/23-IFN-γ信号通路在机体对分枝杆菌的免疫防御中起关键作用。IL-12p40或IL-12Rβ1基因缺失及核因子κB必须调节蛋白(nuclear factor κB essential modulator,NEMO)变异是IFN-γ相关免疫力损伤和发生MSMD的原因[11-12]。现已发现,不同种族人群中存在至少347种IFN-γ突变体和多种启动子区域或NF-κB结合区域的单核苷酸多态性(single nucleotide polymorphism,SNP)[13],它们不仅影响传染性疾病,尤其是肺结核和病毒性肝炎,还与再生障碍性贫血和银屑病有关。
IFN基因多态性与药物疗效有关。使用PEG-IFN-α和利巴韦林(ribavirin,RBV)标准方法治疗丙型肝炎后,临床观察到非洲裔患者的疗效显著低于欧洲裔患者[13]。2009年,通过全基因组关联研究发现,Ⅲ型IFN基因多态性是这一现象的遗传学基础,它影响了PEG-IFN-α和RBV的疗效及病毒的清除率[14-15]。IFN-λ3和IFN-λ4基因附近的3个SNP与丙型肝炎病毒(hepatitis C virus,HCV)感染的治疗效果相关,且它们之间的连锁不平衡值很高。其中rs12979860(C/T)位于IFN-λ3基因上游3 kb处[14-15];rs8099917(T/G)位于IFN-λ2与IFN-λ3之间;rs368234815(TT/ΔG)(以前称为ss469415590)在IFN-λ3基因上游引起移码突变,使IFN-λ4编码新的氨基酸序列[16]。此外,IFN-λ基因SNP与巨细胞病毒、人类T细胞白血病病毒、乙型肝炎病毒(hepatitis B virus,HBV)、人类免疫缺陷病毒(human immunodeficiency virus,HIV)和HSV的感染有关[17]。
除基因变异,某些表观遗传学修饰也影响IFN表达。IFN-γ启动子区域的甲基化水平增加可提高Th1细胞的IFN-γ表达,降低Th2细胞的IFN-γ表达,并导致哮喘。相反,减少IFN-γ启动子区域的甲基化与舒张压升高、胆汁闭锁、牙髓炎症和慢性牙周炎有关[12]。目前研究已证实,IFN基因变异会影响机体抗病毒和抗细菌感染的能力,还与一些非感染性疾病的发生发展有关。
3 病毒抗IFN策略病毒在宿主中的增殖和传播依赖其逃避宿主防御体系识别和控制的能力,它们进化出多种免疫逃避机制,特别是针对IFN及IFN诱生分子这类天然免疫效应系统中的成员。
3.1 病毒抑制IFN诱生细胞可通过位于细胞质或内体膜上的传感器来感知病毒的入侵,这些传感器包括视黄酸诱导基因Ⅰ(retinoic acid inducible gene Ⅰ,RIG-Ⅰ)和黑色素瘤分化相关基因5(melanoma differentiation associated gene 5,MDA5)RNA解旋酶、IFN-β启动子刺激因子1(interferon β promoter stimulator 1,IPS-1)和某些TLR(如TLR3、TLR7、TLR8和TLR9)[18-21]。双链RNA病毒由MDA5和TLR3识别;单正链RNA病毒主要由MDA5识别,部分由RIG-Ⅰ识别;单负链RNA病毒由RIG-Ⅰ识别;双链DNA病毒由TLR9识别。一旦宿主细胞识别病毒入侵后,一系列的转录因子如IRF-3、NK-κB、活化蛋白1(activating protein 1,AP-1)和p300/CBP等被激活并转移入核,与IFN启动子结合上调IFN表达。HPV的E6基因和甲型流感病毒的NS1基因可使IRF-3失活,从而抑制IFN产生[22-24]。白蛉病毒属的托斯卡纳病毒表达一种非结构蛋白,可直接作用于RIG-Ⅰ,导致其降解[25]。口蹄疫病毒(foot and mouth disease virus,FMDV)的L、3C和2B蛋白促进RIG-Ⅰ mRNA表达,也能够促进RIG-Ⅰ蛋白降解[26]。HBV可促进miR146a表达上调,后者直接作用于RIG-Ⅰ mRNA,降低其表达,从而抑制IFN生成[27]。登革病毒NS4A蛋白可直接作用于IPS-1,阻止其与RIG-Ⅰ结合[28]。猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)的3CLSP能直接作用于IPS-1 Glu268(E268/G269),通过不依赖蛋白酶和半胱氨酸天冬氨酸特异性蛋白酶(cysteinyl aspartate specific proteinase,caspase)的方式降解IPS-1[29]。HCV的NS3/4A也能降解IPS-1,抑制IFN诱生信号通路[30]。
3.2 病毒抑制IFN信号通路的激活JAK/STAT信号通路在IFN抗病毒过程中起重要作用,质膜上的IFN-α/β受体激活JAK1和TYK2分子,IFN-γ受体激活JAK1和JAK2分子,激活后发生磷酸化,使信号传递入核。副黏病毒和风疹病毒的非结构蛋白V和C可通过降解STAT分子、阻止或降低磷酸化水平、限制核转移等方式阻断宿主细胞合成Ⅰ和Ⅱ型IFN。副黏病毒V蛋白还可直接作用于IFN-β启动子,阻断宿主细胞表达IFN-β。正是由于病毒在宿主细胞中表达此类影响IFN合成信号通路的蛋白,导致病毒能在IFN敏感细胞中增殖。埃博拉病毒VP24蛋白可与核转运蛋白(karyopherin)α结合,抑制STAT1核转运,从而使宿主细胞对IFN耐受[31]。病毒还可引起细胞因子信号转导抑制因子(suppressor of cytokine signaling,SOCS)表达,负调控JAK/STAT信号转导[32-33]。例如,副黏病毒和风疹病毒的V和C蛋白可干扰IFN诱导的蛋白激酶R和RNA腺苷脱氨酶1表达,从而防止病毒基因翻译过程被抑制和宿主细胞凋亡,使病毒能在宿主细胞中存活和复制[34-35]。痘病毒可分泌一种与IFN-γ特异性结合的因子,阻止IFN-γ与受体结合[36]。最近发现的多食棘阿米巴巨病毒(Acanthamoeba polyphaga mimivirus,APMV)可能是人类肺炎的病原体,它能诱导人外周血单核细胞(peripheral blood mononuclear cell,PBMC)产生Ⅰ型IFN,通过STAT1和STAT2去磷酸化及病毒受体抑制ISG表达来对抗IFN-α,但对IFN-β敏感[37]。
4 IFN抗病毒的拮抗和协同作用每一种IFN均可诱导多种基因表达,介导各种生物学效应。虽然IFN可有效抑制水疱性口炎病毒(vesicular stomatitis virus,VSV)和脑心肌炎病毒(encephalomyocarditis virus,EMCV)在细胞内的复制,但几乎所有病毒都进化出对抗IFN的机制,并完全或部分抑制IFN的抗病毒作用。然而研究发现,病毒抵抗Ⅰ与Ⅱ型IFN的机制是不同的,联合使用IFN可能克服病毒的IFN抗性。早在1979年,Fleischmann等就观察到Ⅰ和Ⅱ型IFN具有相互促进作用,随后还观察到它们在抗肿瘤方面也相互促进。在HIV感染和自身免疫性疾病患者中同样观察到IFN的协同作用[38]。IFN-α/β和IFN-γ在体内外均有协同抑制人巨细胞病毒(human cytomegalovirus,HCMV)复制的作用[39]。此外,多项研究显示,IFN家族对HCV、拉沙病毒(Lassa virus,LASV)、水痘-带状疱疹病毒(varicella-zoster virus,VZV)、HCMV和严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)均表现出协同抗病毒作用[40-44]。Peng等[45]研究Ⅰ和Ⅱ型IFN协同抑制HSV-1复制机制时发现,IFN-β1和IFN-γ分别通过独立的信号途径对同一个效应基因起作用,因此联合使用IFN比单独使用IFN具有更好的抗病毒效果。目前,Ⅰ与Ⅱ型IFN具有协同抗病毒的作用已得到公认,对Ⅰ与Ⅲ型IFN的协同作用还存在争议。有研究显示Ⅰ与Ⅲ型IFN对HCV有协同抗病毒作用,但对HSV-2无协同抗病毒作用。最近有学者研究了IFN-α与IFN-λ对多种病毒的拮抗/协同抗病毒作用,结果显示IFN-λ抑制病毒复制的效果没有IFN-α明显,且IFN-λ对IFN-α抑制病毒复制有拮抗作用。
5 结语病毒已经进化出多种策略,通过阻断IFN生成和ISG表达来规避宿主的天然免疫反应。其他因素也影响IFN的抗病毒效应。例如,临床分离病毒株与实验室传代病毒株可能具有截然不同的IFN反应,尤其是RNA病毒。RNA病毒由于依赖RNA的RNA聚合酶保真性不高,在传代培养过程中基因变异迅速积累引起表型改变。此外,细胞系的选择也会影响实验结果,因为许多永生化或转化的传代细胞系在关键的天然免疫信号中存在突变。同样,基因敲除或下调的细胞系或实验动物也会影响实验结果,特别是在使用过表达或下调方法破坏了内源性蛋白相互作用时。研究病毒阻断天然免疫反应的机制对开发抗病毒感染的新策略非常重要,关键的免疫逃逸分子可能成为抗病毒治疗的靶点,关键的抗病毒分子也可能成为抗病毒治疗的潜在药物。因此,深入了解免疫逃避关键因素的信息能推进设计安全、有效的病毒疫苗和确定新现病毒的治疗策略。
[1] |
Isaacs A, Lindenmann J. Virus interference. Ⅰ. The interferon[J]. Proc R Soc Lond B Biol Sci, 1957, 147: 258-267.
[DOI]
|
[2] |
Nagano Y, Kojima Y. Inhibition of vaccinia infection by a liquid factor in tissues infected by homologous virus[J]. C R Seances Soc Biol Fil, 1958, 152(11): 1627-1629.
[URI]
|
[3] |
Donnelly RP, Kotenko SV. Interferon-lambda: a new addition to an old family[J]. J Interferon Cytokine Res, 2010, 30(8): 555-564.
[DOI]
|
[4] |
Ivashkiv LB, Donlin LT. Regulation of type Ⅰ interferon responses[J]. Nat Rev Immunol, 2014, 14(1): 36-49.
[DOI]
|
[5] |
Teijaro JR. Type Ⅰinterferons in viral control and immune regulation[J]. Curr Opin Virol, 2016, 16: 31-40.
[DOI]
|
[6] |
Lopušná K, Režuchová I, Betáková T, Skovranová L, Tomažková J, Lukáčiková L, Kabát P. Interferons lambda, new cytokines with antiviral activity[J]. Acta Virol, 2013, 57(2): 171-179.
[DOI]
|
[7] |
Bordi L, Lalle E, Lapa D, Caglioti C, Quartu S, Capobianchi MR, Castilletti C. Type Ⅲ interferon (IFN-lambda) antagonizes the antiviral activity of interferon-alpha in vitro[J]. J Biol Regul Homeost Agents, 2013, 27(4): 1001-1009.
[URI]
|
[8] |
Schwartz DM, Bonelli M, Gadina M, O'Shea JJ. Type Ⅰ/Ⅱ cytokines, JAKs, and new strategies for treating autoimmune diseases[J]. Nat Rev Rheumatol, 2016, 12(1): 25-36.
[DOI]
|
[9] |
Capobianchi MR, Uleri E, Caglioti C, Dolei A. Type Ⅰ IFN family members: similarity, differences and interaction[J]. Cytokine Growth Factor Rev, 2015, 26(2): 103-111.
[DOI]
|
[10] |
Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs[J]. Immunity, 2012, 36(4): 515-528.
[DOI]
|
[11] |
Smith NL, Denning DW. Clinical implications of interferon-γ genetic and epigenetic variants[J]. Immunology, 2014, 143(4): 499-511.
[DOI]
|
[12] |
Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity[J]. Semin Immunol, 2014, 26(6): 454-470.
[DOI]
|
[13] |
Heim MH. 25 years of interferon-based treatment of chronic hepatitis C: an epoch coming to an end[J]. Nat Rev Immunol, 2013, 13(7): 535-542.
[DOI]
|
[14] |
Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'Huigin C, Kidd J, Kidd K, Khakoo SI, Alexander G, Goedert JJ, Kirk GD, Donfield SM, Rosen HR, Tobler LH, Busch MP, McHutchison JG, Goldstein DB, Carrington M. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus[J]. Nature, 2009, 461(7265): 798-801.
[DOI]
|
[15] |
Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, Mchutchison JG, Goldstein DB. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance[J]. Nature, 2009, 461(7262): 399-401.
[DOI]
|
[16] |
Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami M. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C[J]. Nat Genet, 2009, 41(10): 1105-1109.
[DOI]
|
[17] |
Bibert S, Roger T, Calandra T, Bochud M, Cerny A, Semmo N, Duong FH, Gerlach T, Malinverni R, Moradpour D, Negro F, Müllhaupt B, Bochud PY; Swiss Hepatitis C Cohort Study. IL28B expression depends on a novel TT/-G polymorphism which improves HCV clearance prediction[J]. J Exp Med, 2013, 210(6): 1109-1116.
[DOI]
|
[18] |
Chinnaswamy S. Gene-disease association with human IFNL locus polymorphisms extends beyond hepatitis C virus infections[J]. Genes Immun, 2016, 17(5): 265-275.
[DOI]
|
[19] |
Devasthanam AS. Mechanisms underlying the inhibition of interferon signaling by viruses[J]. Virulence, 2014, 5(2): 270-277.
[DOI]
|
[20] |
van Montfoort N, Olagnier D, Hiscott J. Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors[J]. Cytokine Growth Factor Rev, 2014, 25(6): 657-668.
[DOI]
|
[21] |
Orzalli MH, Knipe DM. Cellular sensing of viral DNA and viral evasion mechanisms[J]. Annu Rev Microbiol, 2014, 68: 477-492.
[DOI]
|
[22] |
Chiang JJ, Davis ME, Gack MU. Regulation of RIG-I-like receptor signaling by host and viral proteins[J]. Cytokine Growth Factor Rev, 2014, 25(5): 491-505.
[DOI]
|
[23] |
Meyer SI, Fuglsang K, Blaakaer J. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination[J]. Acta Obstet Gynecol Scand, 2014, 93(12): 1209-1218.
[DOI]
|
[24] |
Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection[J]. Cytokine Growth Factor Rev, 2014, 25(6): 669-679.
[DOI]
|
[25] |
Gori Savellini G, Gandolfo C, Cusi MG. Truncation of the C-terminal region of Toscana virus NSs protein is critical for interferon-β antagonism and protein stability[J]. Virology, 2015, 486: 255-262.
[DOI]
|
[26] |
Zhu Z, Wang G, Yang F, Cao W, Mao R, Du X, Zhang X, Li C, Li D, Zhang K, Shu H, Liu X, Zheng H. Foot-and-mouth disease virus viroporin 2B antagonizes RIG-I-mediated antiviral effects by inhibition of its protein expression[J]. J Virol, 2016, 90(24): 11106-11121.
[DOI]
|
[27] |
Hou Z, Zhang J, Han Q, Su C, Qu J, Xu D, Zhang C, Tian Z. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a[J]. Sci Rep, 2016, 6.
[DOI]
|
[28] |
Chan YK, Gack MU. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity[J]. Nat Immunol, 2016, 17(5): 523-530.
[DOI]
|
[29] |
Dong J, Xu S, Wang J, Luo R, Wang D, Xiao S, Fang L, Chen H, Jiang Y. Porcine reproductive and respiratory syndrome virus 3C protease cleaves the mitochondrial antiviral signalling complex to antagonize IFN-β expression[J]. J Gen Virol, 2015, 96(10): 3049-3058.
[DOI]
|
[30] |
Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity[J]. Proc Natl Acad Sci USA, 2005, 102(49): 17717-17722.
[DOI]
|
[31] |
Wong G, Kobinger GP, Qiu X. Characterization of host immune responses in Ebola virus infections[J]. Expert Rev Clin Immunol, 2014, 10(6): 781-790.
[DOI]
|
[32] |
Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB, Berry KN, Yen B, Hamilton J, Brett TJ, Pappu RV, Leung DW, Basler CF, Amarasinghe GK. Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1[J]. Cell Host Microbe, 2014, 16(2): 187-200.
[DOI]
|
[33] |
Fleming SB. Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists[J]. Vaccines (Basel), 2016, 4(3).
[DOI]
|
[34] |
Ning YJ, Feng K, Min YQ, Cao WC, Wang M, Deng F, Hu Z, Wang H. Disruption of type Ⅰ interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies[J]. J Virol, 2015, 89(8): 4227-4236.
[DOI]
|
[35] |
Li Z, Okonski KM, Samuel CE. Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the induction of interferon by measles virus[J]. J Virol, 2012, 86(7): 3787-3794.
[DOI]
|
[36] |
Puehler F, Schwarz H, Waidner B, Kalinowski J, Kaspers B, Bereswill S, Staeheli P. An interferon-gamma-binding protein of novel structure encoded by the fowlpox virus[J]. J Biol Chem, 2003, 278(9): 6905-6911.
[DOI]
|
[37] |
Silva LC, Almeida GM, Oliveira DB, Dornas FP, Campos RK, La Scola B, Ferreira PC, Kroon EG, Abrahão JS. A resourceful giant: APMV is able to interfere with the human type Ⅰ interferon system[J]. Microbes Infect, 2014, 16(3): 187-195.
[DOI]
|
[38] |
Capobianchi MR, Mattana P, Mercuri F, Conciatori G, Ameglio F, Ankel H, Dianzani F. Acid lability is not an intrinsic property of interferon-alpha induced by HIV infected cells[J]. J Interferon Res, 1992, 12(6): 431-438.
[DOI]
|
[39] |
Sainz B Jr, LaMarca HL, Garry RF, Morris CA. Synergistic inhibition of human cytomegalovirus replication by interferon-alpha/beta and interferon-gamma[J]. Virol J, 2005, 2: 14.
[DOI]
|
[40] |
Larkin J, Jin L, Farmen M, Venable D, Huang Y, Tan SL, Glass JI. Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system[J]. J Interferon Cytokine Res, 2003, 23(5): 247-257.
[DOI]
|
[41] |
Asper M, Sternsdorf T, Hass M, Drosten C, Rhode A, Schmitz H, Günther S. Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus[J]. J Virol, 2004, 78(6): 3162-3169.
[DOI]
|
[42] |
Desloges N, Rahaus M, Wolff MH. Role of the protein kinase PKR in the inhibition of varicella-zoster virus replication by beta interferon and gamma interferon[J]. J Gen Virol, 2005, 86(Pt 1): 1-6.
[URI]
|
[43] |
Castilletti C, Bordi L, Lalle E, Rozera G, Poccia F, Agrati C, Abbate I, Capobianchi MR. Coordinate induction of IFN-alpha and -gamma by SARS-CoV also in the absence of virus replication[J]. Virology, 2005, 341(1): 163-169.
[DOI]
|
[44] |
Scagnolari C, Trombetti S, Alberelli A, Cicetti S, Bellarosa D, Longo R, Spanò A, Riva E, Clementi M, Antonelli G. The synergistic interaction of interferon types Ⅰ and Ⅱ leads to marked reduction in severe acute respiratory syndrome-associated coronavirus replication and increase in the expression of mRNAs for interferon-induced proteins[J]. Intervirology, 2007, 50(2): 156-160.
[DOI]
|
[45] |
Peng T, Zhu J, Hwangbo Y, Corey L, Bumgarner RE. Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts[J]. J Virol, 2008, 82(4): 1934-1945.
[DOI]
|