文章快速检索     高级检索
  微生物与感染  2018, Vol. 13 Issue (2): 102-106      DOI: 10.3969/j.issn.1673-6184.2018.02.007
0
Contents            PDF            Abstract             Full text             Fig/Tab
PINK1/parkin通路调控线粒体自噬机制的研究进展
郎秀娟 , 王燕     
哈尔滨医科大学微生物学教研室,哈尔滨 150081
摘要:线粒体自噬指细胞通过自噬机制选择性除去损伤或多余的线粒体。真核生物通过线粒体自噬调控线粒体质量,维持供能细胞器的功能。大量研究表明,帕金森病相关基因PINK1和parkin可通过线粒体自噬参与并维持线粒体功能。PINK1与parkin能协同特异性识别损伤的线粒体,PINK1作为线粒体质量调控的探测器被活化,此过程中泛素化酶和去泛素化酶对维持parkin活性及线粒体自噬的效率有重要作用。本文主要总结PINK1/parkin通路在线粒体自噬中的功能与作用。
关键词PINK1    Parkin    线粒体自噬    
Progress on PINK1/parkin pathway-mediated mitophagy
LANG Xiujuan , WANG Yan     
Department of Microbiology, Harbin Medical University, Harbin 150081, China
Abstract: Mitophagy is a special version of autophagy which eliminates damaged or redundant mitochondria effectively and selectively. Eukaryotes conduct mitochondrial quality control via mitophagy to maintain the function of the power-generating organelles. Recently, a series of studies have demonstrated that two Parkinson's disease-related genes, PINK1 and parkin, were involved in mitophagy. Parkin and PINK1 cooperate with each other to recognize damaged mitochondria specifically. Particularly, ubiquitin and deubiquitinases play essential roles in modulating parkin activity and mitophagy efficiency. Here we introduce and review the recent studies on PINK1/parkin pathway in mitophagy.
Key words: PINK1    Parkin    Mitophagy    

线粒体是真核生物的重要供能器官,对细胞内能量产生、新陈代谢、细胞死亡等过程极为重要。此外,线粒体也会产生有害物质——活性氧(reactive oxygen species,ROS),并隔离促凋亡因子,对细胞生存造成消极影响[1]。线粒体维持其功能和活性的这一生理过程称为线粒体内稳态[2]。真核生物具有精细的调控系统以维持自身稳态,其中线粒体自噬是调控线粒体稳态的重要途径。一旦线粒体受损、衰老或丧失正常功能,细胞会利用自噬机制将其选择性清除,称为线粒体自噬[3]

1 自噬和线粒体自噬

自噬是真核生物的常规机制,Ohsumi对其进行了深入研究,并于2016年被授予诺贝尔生理医学奖[4]。自噬的主要功能是清除细胞内成分,包括胞质、聚集的蛋白及细胞器。目前,自噬主要有3种类型,包括分子伴侣介导的自噬、巨自噬及微自噬[5]。在巨自噬中,单独的细胞内组分会被双层膜结构围绕,称为自噬体。自噬体与溶酶体融合,利用溶酶体酶将其内部成分降解。这种非选择性的降解主要发生于饥饿时,通过回收并利用细胞内组分为细胞提供营养物质。微自噬指溶酶体膜内陷,直接吞噬细胞内组分。分子伴侣介导的自噬主要指胞质内蛋白结合到分子伴侣后被转运到溶酶体进行降解[6]

线粒体自噬主要通过巨自噬清除多余和受损的线粒体[7-8]。目前已知调控哺乳动物中线粒体自噬的机制主要有两种:一种是parkin依赖性的,即parkin (E3 ubiquitin-protein ligase parkin)与线粒体外膜蛋白PINK1(PTEN-induced putative kinase 1)介导的线粒体自噬[7];另一种是parkin非依赖性的,包括FUNDC1参与的缺氧介导的线粒体自噬及Bnip3/Nix介导的线粒体自噬[9]。近几年研究表明,PINK1和parkin是调控线粒体自噬的重要组分,有助于维持线粒体正常功能。

2 PINK1/parkin的分子结构和功能

PINK1和parkin是帕金森病的主要致病蛋白,其编码基因已成为神经退行性疾病的主要遗传性危险因子[10]。PINK1是由581个氨基酸组成的多肽,其N端类似于线粒体靶定信号,后面连接一段疏水跨膜区,作为线粒体内膜转移终止信号,156~509之间的残基构成丝氨酸/苏氨酸结构域,后面是C端结构域,作为线粒体外膜滞留信号。在正常线粒体中,PINK1会不断被转移至线粒体内膜,被线粒体内膜蛋白酶PARL(presenilin-associated rhomboid-like protein)切割,产生一个N端降解基序,随后被清除[11]。因此,正常情况下PINK1含量极低,很难被检测到。然而,线粒体膜电位受损时,PINK1进入线粒体内膜的路径被阻断,PINK1聚集于线粒体外膜,并将parkin募集至受损线粒体。

Parkin是E3泛素连接酶,结构包括Ubl、RING0、RING1、IBR和RING2区。其中Ubl区主要功能包括识别基质、联合蛋白酶体、结合SH3和泛素蛋白相互作用结构域,以及调节细胞内parkin水平和活性[12]。稳态条件下,parkin通过以下两种机制维持自身被抑制的状态:第一种是RING0区域将泛素蛋白受体位点半胱氨酸掩藏起来;第二种是所谓的parkin抑制因子,一段位于IBR和RING2区域的α螺旋结构,阻断RING1区域的E2结合位点。线粒体损伤后,parkin的空间构象发生改变,起催化作用的半胱氨酸暴露,并转化为呈活化状态的E3泛素连接酶[13-14]

3 PINK1/parkin信号通路 3.1 PINK1是线粒体损伤的主要探测器

正常情况下,PINK1表达水平极低,无法被检测到。在特定线粒体应激情况下,只有内源性PINK1表达水平增加到一定程度才可通过蛋白免疫印迹法或显微镜被检测到,且其主要定位于线粒体外膜。

受损线粒体的主要特点是失去呼吸链产生的膜电位。用羰基氰化物间氯苯腙(carbonylcyanide-m-chlorophenylhydrazone,CCCP)或羰基-氰-对-三氟甲氧基本腙(carbonyl cyanide-p-trifluoromethoxyphenylhydrazone,FCCP)处理细胞会导致呼吸链解偶联,使线粒体功能发生障碍。其他类型线粒体缺陷也会导致PINK1聚集于线粒体,如ROS水平增加或错误折叠的蛋白聚集于线粒体基质[15-16]

PINK1显著聚集于电势降低的线粒体中,表明其可能是线粒体损伤的主要探测器。用CCCP/FCCP处理细胞3 h后,能检测到内源性PINK1蛋白的自身积累;而处理细胞12~16 h后,PINK1表达量达最高水平。移除CCCP/FCCP后,由于PARL蛋白酶激活,PINK1数量快速下降至低水平[17]。用CCCP处理细胞时,蛋白免疫印迹结果显示,相比于外源表达的PINK1,内源性PINK1全长条带轻微升高,表明聚集的PINK1分子可能发生自体磷酸化[18]

线粒体功能紊乱时,细胞内PINK1蛋白表达水平显著增加,但原因未知。有研究[19]认为,正常情况下PINK1通过TOM/TIM复合体进入线粒体,被定位于线粒体内膜的蛋白酶PARL切割降解;而功能紊乱的线粒体膜电位降低,PINK1不能进入线粒体内膜,积累于线粒体外膜。

3.2 PINK1/parkin协同调控线粒体自噬发生

果蝇敲除模型实验首次明确PINK1与parkin的相互作用,即共同调控线粒体自噬,进而维持线粒体质量。PINK1和parkin这两种蛋白缺失任何一种都会造成线粒体受损,包括果蝇肌肉退化及线粒体形态异常。然而,过表达parkin可恢复一部分PINK1缺失的表型,而PINK1无法弥补parkin缺失造成的损伤。因此,推测PINK1位于parkin上游发挥作用,两者协同调控线粒体自噬[20]。人类细胞暴露于CCCP后会缺失膜电位,PINK1介导parkin从胞质转位到损伤的线粒体外膜。此时,parkin受抑制的泛素连接酶功能被活化,进而介导细胞器的移除[21]

Narendra等[22]证明,环己酰亚胺(cycloheximide,CHX)可通过抑制蛋白合成而阻断CCCP诱导的PINK1和parkin聚集,表明PINK1蛋白水平增加可归因于新多肽的生物合成,但该结论仍需进一步明确。近期研究[23]表明,PINK1和parkin在细胞中的表达水平是转录调控机制的基础,生长因子缺失、饥饿或其他细胞受损均会诱导PINK1和parkin的转位。

3.3 PINK1募集并活化parkin

研究[24]证实,PINK1可通过parkin磷酸化介导其转移至线粒体,随后诱导线粒体自噬等过程。首先,线粒体发生去膜电位后,PINK1丝氨酸228和丝氨酸402位点发生自体磷酸化,这是募集parkin所必需的。其次,PINK1可直接磷酸化parkin Ubl区的丝氨酸65位点[25]。有趣的是,将parkin丝氨酸65位点突变为丙氨酸停止其磷酸化,或使其Ubl区缺失,parkin仍可以PINK1依赖性方式转移至线粒体。最近一项新发现的机制可解释这种现象,即PINK1可磷酸化泛素蛋白丝氨酸65位点(与parkin的Ubl区丝氨酸65位点具有同源性);反之,磷酸化的泛素蛋白可活化parkin的E3连接酶活性。那么,parkin活化究竟是由parkin的磷酸化还是泛素蛋白的磷酸化所促进的?这一问题仍存在争议。Kane等[26]证明,泛素蛋白的磷酸化足以活化parkin分子。Koyano及其同事[27]认为,对于完全活化的E3连接酶来说,parkin丝氨酸位点和泛素蛋白丝氨酸位点的磷酸化均是必需的。最近研究表明,parkin首先以PINK1依赖性方式被活化,随后泛素化线粒体表面蛋白,之后PINK1磷酸化新形成的多聚泛素链而产生磷酸泛素蛋白,进一步促进parkin活化。

稳态条件下,PINK1可抑制线粒体自噬的诱导[28]。这一点可通过免疫沉淀法证明,PINK1在线粒体内产生相对分子质量为53 000的切割产物PINK1-PF,随后PINK1-PF转移至胞质并结合parkin,进而抑制parkin转移至线粒体及随后诱导线粒体自噬过程。

3.4 Parkin泛素化线粒体外膜蛋白,进一步引发线粒体自噬

随着parkin的募集与活化,其被认为是线粒体外膜的非特异性泛素蛋白。蛋白质组学研究证明,广泛的泛素基质均通过parkin进行泛素化,而在诱导线粒体自噬方面,广泛的泛素化比特异性基质的泛素化更重要[29]。Parkin泛素化线粒体外膜蛋白会进一步引发线粒体自噬,利用自噬清除整个被标记的器官。围绕受损线粒体的隔离膜的形成由自噬受体介导,这些自噬受体可通过其泛素结合区域结合至泛素蛋白。到目前为止,已明确了几种在线粒体自噬中有重要作用的受体,包括SQSTM1/P62、NBR1(neighbor of BRCA1 gene)、NDP52 (nuclear dot 52 kDa protein)和OPTN(optineurin)。研究表明,在PINK1/parkin介导的线粒体自噬发生过程中,p62优先定位于邻近线粒体之间,通过其PB1寡聚结构域促进受损线粒体的聚积[30]。敲除p62,对parkin募集至线粒体这一过程无影响,但影响受损线粒体的最终清除。NBR1是连接LC3与泛素蛋白的另一蛋白,与p62协同参与线粒体自噬过程[31]。NBR1与p62在PINK1/parkin介导的线粒体自噬过程中是非必需的。研究[32]表明,NDP52和OPTN是PINK1/parkin介导线粒体自噬过程的主要受体,线粒体的有效清除需它们参与。与p62的作用不同,NDP52和OPTN主要定位于受损线粒体的表面,作为自噬受体,促进LC3募集至受损线粒体,加速受损线粒体被自噬体吞噬并清除的过程。在PINK1/parkin介导的线粒体自噬过程中,OPTN的功能依赖TBK1(Tank-binding kinase 1)对其磷酸化的作用,反之,TBK1的活化需OPTN募集和磷酸化,两者相互调节,促进线粒体自噬发生[33-34]

Youle等最近研究表明,敲除线粒体分解蛋白Drp1促进parkin转位至线粒体,加速线粒体自噬发生;并提出新观点,即线粒体分解可保护线粒体未受损伤的结构,从而维持线粒体稳态[35]

Parkin的拮抗剂是去泛素化酶USP30,能移除线粒体外膜蛋白的泛素化分子,并因此抑制线粒体自噬。抑制USP30可促进线粒体损伤及其自噬,增强对线粒体的质量调控,与治疗帕金森病的方法相关[36]

3.5 PINK1介导parkin非依赖性线粒体自噬

PINK1基因敲除小鼠呈现连续性的神经退行性病变,而parkin基因敲除小鼠未发生神经性病变,表明存在其他PINK1依赖性磷酸化位点,可代偿parkin在线粒体自噬中的作用[37]

研究表明,癌细胞中E3泛素连接酶ARIH1/HHARI可诱导PINK1依赖性的线粒体自噬发生,这一过程不依赖parkin[38]。最近磷酸化蛋白质组学分析表明,Rab8A、Rab8B及Rab13是PINK1的间接基质,可作为PINK1活性的生物标记,对监测线粒体自噬发生有重要作用,且这一过程不需parkin参与[39]。以上研究表明,PINK1可介导parkin非依赖性的线粒体自噬。Youle等[40]研究证实,敲除parkin后,PINK1可通过磷酸化泛素蛋白,将OPTN和NDP52募集至线粒体,然后OPTN和NDP52将ULK1、DFCP1和WIPI1募集至邻近线粒体的位置,进而与LC3相互作用,诱导低水平线粒体自噬。这表明PINK1介导的线粒体自噬可不依赖parkin,但parkin的存在会放大PINK1诱导的信号通路,增强线粒体自噬过程[40]

4 结语

PINK1可通过募集并活化parkin引发线粒体自噬;parkin敲除后,PINK1也可通过泛素蛋白磷酸化募集OPTN和NDP52至线粒体,进而诱导低水平线粒体自噬。PINK1是线粒体自噬发生的主要因子,还可作为衡量线粒体是否损伤的探测器。但线粒体损伤特异性上调PINK1基因表达的通路仍需进一步研究。

参考文献
[1]
Giampazolias E, Tait SW. Mitochondria and the hallmarks of cancer[J]. FEBS J, 2016, 283(5): 803-814. [DOI]
[2]
Groenewoud MJ, Zwartkruis FJ. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis[J]. Open Biol, 2013, 3(12): 130185. [DOI]
[3]
Zhu J, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013, 9(11): 1663-1676. [DOI]
[4]
Tooze SA, Dikic I. Autophagy captures the Nobel prize[J]. Cell, 2016, 167(6): 1433-1435. [DOI]
[5]
Mrschtik M, Ryan KM. Lysosomal proteins in cell death and autophagy[J]. FEBS J, 2015, 282(10): 1858-1870. [DOI]
[6]
Wu H, Chen S, Ammar AB, Xu J, Wu Q, Pan K, Zhang J, Hong Y. Crosstalk between macroautophagy and chaperone-mediated autophagy: implications for the treatment of neurological diseases[J]. Mol Neurobiol, 2015, 52(3): 1284-1296. [DOI]
[7]
Springer MZ, Macleod KF. In brief: Mitophagy: mechanisms and role in human disease[J]. J Pathol, 2016, 240(3): 253-255. [DOI]
[8]
Campos JC, Bozi LH, Bechara LR, Lima VM, Ferreira JC. Mitochondrial quality control in cardiac diseases[J]. Front Physiol, 2016, 7: 479. [DOI]
[9]
Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems[J]. Cell Res, 2014, 24(7): 787-795. [DOI]
[10]
Klein C, Westenberger A. Genetics of Parkinson's disease[J]. Cold Spring Harb Perspect Med, 2012, 2(1): a008888. [PMC]
[11]
Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW. PINK1 cleavage at position A103 by the mitochondrial protease PARL[J]. Hum Mol Genet, 2011, 20(5): 867-879. [DOI]
[12]
Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases[J]. Hum Mutat, 2012, 33(9): 1340-1344. [DOI]
[13]
Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases[J]. Nat Commun, 2013, 4: 1982. [DOI]
[14]
Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K. Structure of parkin reveals mechanisms for ubiquitin ligase activation[J]. Science, 2013, 340(6139): 1451-1455. [DOI]
[15]
Priyadarshini M, Orosco LA, Panula PJ. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio)[J]. PLoS One, 2013, 8(11): e81851. [DOI]
[16]
Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria[J]. Autophagy, 2013, 9(11): 1750-1757. [DOI]
[17]
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. J Cell Biol, 2010, 189(2): 211-221. [DOI]
[18]
Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, Shiba-Fukushima K, Sato S, Shimizu H, Fukunaga Y, Taniguchi H, Komatsu M, Hattori N, Mihara K, Tanaka K, Matsuda N. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria[J]. Nat Commun, 2012, 3: 1016. [DOI]
[19]
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. J Cell Biol, 2010, 191(5): 933-942. [DOI]
[20]
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin[J]. Nature, 2006, 441(7097): 1162-1166. [DOI]
[21]
Park S, Choi SG, Yoo SM, Nah J, Jeong E, Kim H, Jung YK. Pyruvate stimulates mitophagy via PINK1 stabilization[J]. Cell Signal, 2015, 27(9): 1824-1830. [DOI]
[22]
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298. [DOI]
[23]
Klinkenberg M, Gispert S, Dominguez-Bautista JA, Braun I, Auburger G, Jendrach M. Restriction of trophic factors and nutrients induces PARKIN expression[J]. Neurogenetics, 2012, 13(1): 9-21. [DOI]
[24]
Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2): 119-131. [DOI]
[25]
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MM. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65[J]. Open Biol, 2012, 2(5): 120080. [DOI]
[26]
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity[J]. J Cell Biol, 2014, 205(2): 143-153. [DOI]
[27]
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510(7503): 162-166. [DOI]
[28]
Fedorowicz MA, de Vries-Schneider RL, Rüb C, Becker D, Huang Y, Zhou C, Alessi Wolken DM, Voos W, Liu Y, Przedborski S. Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy[J]. EMBO Rep, 2014, 15(1): 86-93. [DOI]
[29]
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization[J]. Nature, 2013, 496(7445): 372-376. [DOI]
[30]
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/SQSTM1 is required for parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both[J]. Autophagy, 2010, 6(8): 1090-1106. [DOI]
[31]
Kirkin V, Lamark T, Johansen T, Dikic I. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets[J]. Autophagy, 2009, 5(5): 732-733. [DOI]
[32]
Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation[J]. Proc Natl Acad Sci USA, 2014, 111(42): E4439-E4448. [DOI]
[33]
Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA, Youle RJ, Dikic I. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria[J]. Proc Natl Acad Sci USA, 2016, 113(15): 4039-4044. [DOI]
[34]
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy[J]. Mol Cell, 2015, 60(1): 7-20. [DOI]
[35]
Burman JL, Pickles S, Wang C, Sekine S, Vargas JNS, Zhang Z, Youle AM, Nezich CL, Wu X, Hammer JA, Youle RJ. Mitochondrial fission facilitates the selective mitophagy of protein aggregates[J]. J Cell Biol, 2017, 216(10): 3231-3247. [DOI]
[36]
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy[J]. Nature, 2014, 510(7505): 370-375. [DOI]
[37]
Dave KD, de Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC 3rd, Ahmad SO, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK, Sherer TB, Frasier MA. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease[J]. Neurobiol Dis, 2014, 70: 190-203. [DOI]
[38]
Villa E, Proïcs E, Rubio-Patiño C, Obba S, Zunino B, Bossowski JP, Rozier RM, Chiche J, Mondragón L, Riley JS, Marchetti S, Verhoeyen E, Tait SWG, Ricci JE. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells[J]. Cell Rep, 2017, 20(12): 2846-2859. [DOI]
[39]
Lai YC, Kondapalli C, Lehneck R, Procter JB, Dill BD, Woodroof HI, Gourlay R, Peggie M, Macartney TJ, Corti O, Corvol JC, Campbell DG, Itzen A, Trost M, Muqit MM. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1[J]. EMBO J, 2015, 34(22): 2840-2861. [DOI]
[40]
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309-314. [DOI]

文章信息

郎秀娟, 王燕
LANG Xiujuan, WANG Yan
PINK1/parkin通路调控线粒体自噬机制的研究进展
Progress on PINK1/parkin pathway-mediated mitophagy
微生物与感染, 2018, 13(2): 102-106.
Journal of Microbes and Infections, 2018, 13(2): 102-106.
通信作者
王燕
E-mail:wangyan@hrbmu.edu.cn
基金项目
国家自然科学基金(81772188)

工作空间