文章快速检索     高级检索
  微生物与感染  2019, Vol. 14 Issue (1): 52-58      DOI: 10.3969/j.issn.1673-6184.2019.01.008
0
Contents            PDF            Abstract             Full text             Fig/Tab
干扰素刺激基因15在人类免疫缺陷病毒感染中作用的研究进展
吴还梅1, 卢洪洲1,2,3     
1. 复旦大学附属公共卫生临床中心感染科,上海 201508;
2. 复旦大学附属华山医院感染科,上海 200040;
3. 复旦大学上海医学院内科学系,上海 200032
摘要:随着有效的联合抗反转录病毒疗法(combination antiretroviral therapy,cART)的普及,人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染者的生存期逐步延长。这一过程中,HIV感染者自身免疫反应对免疫系统功能的恢复也发挥了至关重要的作用。HIV感染激活干扰素信号通路,诱导干扰素刺激基因(interferon-stimulated gene,ISG)上调表达,从而发挥抗病毒作用。其中,类泛素蛋白ISG15在HIV感染者中显著上调,通过ISG化抑制HIV颗粒的出芽和释放;而HIV的非结构蛋白则通过干扰ISG化过程或结合干扰素信号通路关键分子,逆转ISG15对病毒的抑制作用。本文从ISG15的生物学特性、在不同细胞亚群中的表达、抗病毒功能及病毒逃逸机制等方面进行综述,为进一步解析ISG15在HIV感染中扮演的角色、探索如何获得以抗HIV感染宿主因子为契机的治疗策略提供了思路。
关键词干扰素刺激基因15    人类免疫缺陷病毒    干扰素刺激基因化    抗病毒作用    
Role of interferon-stimulated gene 15 in human immunodeficiency virus infection
WU Huanmei1, LU Hongzhou1,2,3     
1. Department of Infectious Diseases, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China;
2. Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China;
3. Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
Abstract: The survival period of human immunodeficiency virus (HIV)-infected patients has been gradually extended due to effective combination antiretroviral therapy. The immune response of HIV-infected individuals also plays a crucial role in the recovery of the host's immune system during viral suppression phase. HIV infection activates the interferon signaling pathway and induces up-regulated expression of interferon-stimulated genes (ISGs) that exert antiviral effects. The ubiquitin-like protein ISG15 is one of the most significantly up-regulated host factors in HIV-infected patients, inhibiting the budding and release of HIV viral particles through ISGylation, while the non-structural proteins of HIV interfere with ISGylation process or bind to key molecules of interferon signaling pathways to reverse the inhibitory effect of ISG15 on the virus. Herein we review the biological characteristics of ISG15, its expression in different cell populations, antiviral effects, and mechanism of escaping from the host immune restriction, in order to further understand the role of ISG15 in HIV infection, and to explore the opportunities of functional cure of HIV-infected patients with the strategies using host factors.
Keywords: Interferon-stimulated gene 15    Human immunodeficiency virus    ISGylation    Antiviral effect    

人类免疫缺陷病毒(human immunodeficiency virus,HIV)的发现距今已超过35年,其感染引发的获得性免疫缺陷综合征(acquired immunodeficiency syndrome,AIDS)是导致感染者死亡的主要原因。根据联合国艾滋病规划署2018年最新报道,截至2017年,全球约有3 690万HIV感染者,其中2017年新发感染180万。总计约有2 170万HIV感染者接受规范化联合抗反转录病毒疗法(combination antiretroviral therapy,cART)。自2000年以来,新发HIV感染人数及AIDS相关死亡人数逐年下降[1],这无疑得益于有效的cART,但同时也与生存期延长的HIV慢性感染者所占比例上升有关,即宿主免疫系统与HIV复制之间的博弈日趋平衡。众所周知,目前国内常用cART治疗方案的用药剂量相对较大,患者服用后往往伴随严重的药物毒副反应,如肝肾损伤。因此,在探索抗HIV药物减量及多药合一方案的同时,研究人员仍致力于揭示宿主自身免疫对抗机制及筛选胞内抗病毒因子,以期能通过调动机体自身免疫应答,配合减量的cART治疗,从而提高患者生存质量,实现HIV感染的功能性治愈。

干扰素(interferon,IFN)是一种具有广谱抗病毒作用的宿主因子。它作用于相邻细胞表面的干扰素受体(interferon receptor,IFNR),激活Janus激酶/信号转导和转录激活因子(Janus kinase/signal transducer and activator of transcription,JAK/STAT)信号通路,诱导数百种干扰素刺激基因(interferon-stimulated gene,ISG)的表达,包括干扰素调节因子(interferon regulatory factor,IRF)、蛋白激酶R(protein kinase RNA-activated,PKR)、γ干扰素诱导蛋白10(interferon γ-inducible protein 10,IP10)、2',5'寡聚腺苷酸合成酶(2',5'-oligoadenylate synthetase,OAS)、类泛素蛋白ISG15等,介导了宿主自身抑制HIV复制的过程。其中,ISG15为IFN刺激后上调表达最显著的胞内宿主因子之一,与其共同表达的还有ISG15共价结合靶蛋白所需的连接酶复合体[2]。一直以来,ISG15的抗病毒作用备受关注,近期研究更提出ISG15具有免疫调节功能。

1 ISG15的生物学特征及表达情况

isg15编码的泛素样蛋白分子ISG15又称为泛素交叉反应蛋白(ubiquitin cross-reactive protein,UCRP),是第1个被鉴定的类泛素修饰蛋白。成熟的ISG15相对分子质量为15 000,由相对分子质量为17 000的前体蛋白水解去掉C端的8个氨基酸和N端的蛋氨酸而来。C端和N端为两个泛素样结构域,分别与泛素有29%和31%的同源性[3]。与广泛存在于各种真核生物中的泛素及其他类泛素分子不同,ISG15只在脊椎动物中表达,包括人类、猴和小鼠,且在不同物种间遗传学差异较大。

ISG15在胞内外以游离蛋白分子形式存在,能诱导天然杀伤(natural killer,NK)细胞和T细胞产生IFN-γ[4],但机制尚不明确。单核细胞、T细胞、B细胞、树突细胞(dendritic cell,DC)、NK细胞和粒细胞在未经IFN刺激的情况下能表达ISG15[5],提示ISG15在正常生理条件下发挥一定的作用,可能抑制自身免疫的发生和机体的过度活化。上皮细胞来源的细胞系及健康人外周血单个核细胞(peripheral blood mononuclear cell,PBMC)经IFN-β刺激24 h后,胞内及培养上清液中均能检测到ISG15蛋白,且胞内表达量显著高于胞外[6]。人肺癌细胞系A549经IFN-β刺激后也能显著上调ISG15表达[7]

原代淋巴细胞和单核细胞经IFN-α或IFN-β刺激后能上调ISG15的表达,单核细胞系THP-1在同样刺激下可将游离的ISG15缓慢分泌到培养基中[8]。在cART疗效良好的HIV合并丙型肝炎病毒(hepatitis C virus,HCV)感染的患者中,浆细胞样树突细胞(plasmacytoid dendritic cell,pDC)中也能检测到上调表达的ISG15[9]。病毒感染时,ISG15的上调表达依赖IRF。其中,IRF3为IFN信号通路的关键因子,其编码的蛋白能结合到含有干扰素刺激应答元件(interferon-stimulated response element,IRSE)的ISG15启动子区,上调ISG15表达[10]。此外,淋巴细胞特异性转录因子PU.1能与IRF4或IRF8形成异源复合体,激活ISG15转录[11]

中性粒细胞为血液循环系统中丰度最高的细胞亚群,是机体抵抗感染的第1道防线。研究人员从约氏疟原虫感染的小鼠红细胞裂解液中分离到ISG15蛋白,并证明其具有显著的中性粒细胞趋化作用[12],提示ISG15可能在中性粒细胞介导的炎性反应中发挥一定作用。此外,Poly (I: C)、脂多糖(lipopolysaccharide,LPS)或IFN-β刺激中性粒细胞后,ISG15的表达也显著上调[13]。研究人员发现,中性粒细胞中可观察到ISG15与明胶酶和分泌颗粒的共定位,提示ISG15在粒细胞中通过分泌途径表达[5]。由此可见,IFN应答通路广泛存在于各亚群细胞,不管在胞外还是胞质中均能检测到游离的ISG15蛋白,只是表达量有较大差异。

2 ISG15的抗病毒作用

病毒感染能显著上调ISG15表达,不同细胞亚群对IFN刺激的响应性也存在差异。已有的报道显示,ISG15具有抗流感病毒、Sindbis病毒、疱疹病毒、HIV和埃博拉病毒的作用[14-16]。研究人员在ISG15基因敲除小鼠模型中发现,ISG15缺失导致小鼠对流感病毒A和B亚型、单纯疱疹病毒1型[17]及仙台病毒[15, 17-18]的易感性增加,从而证明了ISG15的抗病毒作用。

2.1 ISG15与靶蛋白的共价结合

分泌到胞外的ISG15能与靶蛋白共价结合,发挥类泛素化修饰功能,称为ISG化(ISGylation)。这些靶蛋白包括IFN诱导的抗病毒因子,如PKR、GTP酶MxA、HuP家族、维甲酸诱导基因Ⅰ (retinoic acid-inducible gene Ⅰ,RIG-Ⅰ)等,以及介导RNA剪切、染色体重建、聚合酶转录、细胞骨架构建等功能的蛋白分子[19]。近期有研究显示,ISG15的E3泛素蛋白连接酶HERC5催化ISG15与IRF3共价结合,减弱IRF3与其负调节因子Pin1的相互作用,从而导致IRF3持续性激活[20],表现为机体持续的IFN抗病毒反应。

ISG化过程为可逆共价结合,去ISG化由泛素特异性肽酶18(ubiquitin specific peptidase 18,USP18)介导。USP18为ISG15的去共价结合蛋白酶,由usp18基因编码,又称为UBP43。缺失UBP43的小鼠对IFN-β刺激异常敏感,能诱导持续的STAT1酪氨酸磷酸化,激活IFN信号通路[3]。表明ISG化通过JAK/STAT信号通路激活IFN应答,且UBP43为ISG化的负调节因子。usp18基因敲除小鼠能抵抗淋巴细胞脉络丛脑膜炎病毒的感染,抑制该病毒的复制,且机体表现出更高水平的ISG化[21]。不仅表明UBP43为降解ISG15类泛素化的蛋白酶,还再次证明ISG15介导的ISG化过程具有抗病毒作用。

2.2 ISG15的抗HIV作用及机制

研究显示,胞外分泌的ISG15可能作为一种细胞因子或趋化因子发挥作用,从而调节免疫细胞的功能,这在HIV感染过程中表现得尤为复杂。Ⅰ型IFN诱导产生的ISG15能诱导LPS活化的CD3+ T细胞分泌IFN-γ,并伴随着吲哚胺2, 3双加氧酶(indoleamine 2, 3-dioxygenase,IDO)活性增强[22],从而增强细胞毒性,表现出抗病毒效应。同样,在B细胞删除的原代培养条件下,ISG15能刺激CD3+ T细胞产生IFN-γ,作用于NK细胞,促进NK细胞增殖及对HIV的杀伤能力[23]。研究人员通过体外T细胞和单核细胞系的HIV感染模型发现,HIV Tat蛋白存在时,转导ISG15能显著上调IFN信号通路活化,抑制HIV复制[24]。IFN-ω能显著上调ISG15表达,并特异性抑制HIV复制[25]。小肠上皮细胞Toll样受体3(Toll-like receptor 3,TLR-3)信号通路活化后,诱导上皮细胞表达IRF3和IRF7并分泌趋化因子,释放包含ISG15蛋白的外体,抑制HIV在巨噬细胞中的复制[26]。虽然ISG15对HIV的抑制作用明显,但机制不清楚,可能是由于胞内因子之间的相互作用。

HIV的出芽释放依赖蛋白运输所需的内吞体分选转运复合体(endosomal sorting complexes required for transport,ESCRT),其中ESCRT-Ⅰ蛋白Tsg101的UEV结构域与HIV Gag蛋白的PTAP基序结合,介导HIV的出芽。ISG15则阻断两者相互作用,在一定程度上抑制了成熟HIV的出芽和释放[16, 27],且这种抑制作用呈ISG15表达量依赖性[16]。这是目前唯一报道的ISG15直接抑制HIV复制的机制。近期有报道显示,ISG化的E3连接酶HERC5能通过与HIV Gag蛋白相互作用,在不影响Gag蛋白从胞内到胞膜运输途径的情况下抑制多轮HIV复制[28]。提示在胞内ISG化抑制HIV成熟过程中,介导蛋白相互作用的分子可能不止一种。

2.3 HIV感染者队列中ISG15的抗病毒作用

从转录水平来看,HIV感染者未经抗反转录病毒治疗(antiretroviral therapy,ART)时ISG15的上调表达最明显,经长期cART治疗后,ISG15的表达量下调。在高病毒载量和低CD4 T细胞计数的患者中,ISG15表达量较高[29]。表明HIV感染者中ISG15表达与病毒载量呈正相关,与CD4 T细胞计数呈负相关,即感染者中ISG15转录水平与疾病进展一致。HIV感染者中,IP-10表达上调,导致患者免疫功能紊乱进而引发疾病进展。miR-21能抑制LPS活化的单核细胞上调表达IP-10,而HIV感染者体内的miR-21表达显著低于健康人群,因此miR-21对IP-10的调节作用能有效延缓疾病进展。而在单核细胞分化为巨噬细胞的过程中,ISG15的表达显著上调,伴随miR-21对IP-10表达的调控作用减弱[30]。因此,ISG15可能是miR-21控制AIDS疾病进展过程中的关键角色。

健康细胞在免疫激活的情况下,ISG15的上调表达十分显著[31],显示其对IFN的应答正常且迅速。但在HIV感染无症状期,ISG15的表达下调,且对IFN-α的应答能力减弱[32],表明HIV感染造成了ISG15介导的IFN应答通路损伤。巨噬细胞为HIV的主要潜伏库之一,HIV的功能性蛋白Vpr能在转录水平和蛋白水平诱导巨噬细胞中ISG15表达上调[33]。因此,ISG15的上调表达同步于HIV的扩增,为HIV感染后抗病毒效应的表现。研究者对HIV感染者的临床信息进行生物信息学分析,发现HIV慢性感染者PBMC和T细胞中的ISG15表达均上调,且CD4 T细胞中ISG15作为IFN抗病毒信号通路中的关键分子,在抗HIV免疫应答中起主要作用[34]。由此可见,ISG15在HIV感染者中的功能远比体外实验复杂,包括对炎症因子、IFN应答通路分子及非功能性小RNA等的调控。

3 HIV逃逸ISG15的抗病毒作用

慢病毒的功能辅助蛋白能特异性靶向宿主胞内限制因子,抑制其发挥抗病毒作用,从而增强病毒自身的复制能力。流感病毒NS1蛋白通过抑制UBE1L的催化反应来抑制ISG15与靶蛋白的共价结合[35];严重急性呼吸综合征(severe acute respiratory syndrome,SARS)病毒能编码ISG15去结合酶[36];牛痘病毒E3蛋白通过与ISG15结合而竞争性阻断其抗病毒作用[37];HCV通过诱导ISG15对RIG-Ⅰ泛素化来抑制IFN产生[38],从而逃逸IFN的抗病毒作用。

研究显示,HIV感染能下调未经活化的原代巨噬细胞中IFN刺激后ISG15的表达[39]。巨噬细胞对IFN免疫应答能力减弱,提示HIV可能通过某种途径逃逸宿主免疫。P21为介导单核细胞分化成熟的细胞周期素依赖性激酶抑制剂,能抑制巨噬细胞和DC中HIV的复制。最新研究显示,巨噬细胞中ISG15特异性水解酶USP18通过下调p21的表达,间接辅助HIV逃逸宿主免疫,增强其复制能力[40]。如前所述,IRF3能与ISRE特异性结合,诱导ISG15表达[10],通过IFN信号通路发挥抗病毒作用。同时,ISG15抑制IRF3降解[41],持续激活IFN的抗病毒免疫应答。而HIV的Vpr蛋白和Vif蛋白能通过泛素化诱导IRF3降解,负向调节机体的抗病毒反应[42]。ISG化能抑制HIV的出芽和释放[27]。研究人员通过芯片矩阵分析发现,HIV的Vpu蛋白能靶向降解ISG15共价结合的E2连接酶UBE2L6,从而降低细胞整体ISG化水平,逃避宿主的免疫抑制作用[43]

IFN-α的抗病毒作用在HIV感染者中并没有得到很好的发挥,提示IFN-α信号通路很可能是HIV的靶标,HIV通过干扰IFN-α发挥抗病毒作用来逃避宿主免疫。HIV感染诱导ISG15的上调表达由STAT1/STAT3介导[44]。而HIV的Vif蛋白则通过降解JAK/STAT信号通路中的分子来抑制IFN-α的抗病毒作用,表现为ISG15的表达水平下降。Vif正是通过与STAT1和STAT3直接结合,借助泛素化途径降解后者[45],从而阻断宿主的抗病毒反应。由此可见,HIV的非结构蛋白通过靶向宿主ISG化过程和拮抗IFN信号通路中的关键分子,阻断ISG15对病毒复制的抑制,从而逃避宿主免疫。

4 结语

到目前为止,ISG15的抗病毒作用仅在人源细胞离体实验及小鼠模型中得到验证。由于缺乏HIV感染小鼠模型,而恒河猴感染模型操作复杂、周期较长,导致ISG15抗HIV的功能目前只在体外细胞系模型中得到验证。HIV感染者中,ISG15更有可能参与免疫功能调节,辅助宿主发挥抗病毒作用。胞外的ISG15诱导IFN-γ产生,介导机体的抗感染免疫;胞内的ISG15则诱导IFN信号通路活化,介导下游细胞因子分泌。ISG化在人体内可能并非抗病毒免疫调节中的唯一通路,因此研究人员发现ISG15缺失患者并未表现出对病毒易感性的增加,且IFN刺激也能诱导其他ISG表达,机体表现出更强的抗感染能力[46]。ISG15通过Ⅰ型IFN参与的免疫调节十分复杂,涉及宿主自身对病毒的限制作用及HIV逃逸宿主免疫。

ISG化及ISG15在HIV感染中的具体作用及机制尚未完全解析,其在宏观水平对HIV复制的抑制作用表现出不同感染人群的差异性,在微观水平的免疫调节信号通路更是错综复杂。因此,有必要进一步探索ISG15在HIV急性感染者、慢性感染者、长期不进展者和精英控制者中的作用和角色。此外,鉴于ISG15缺陷患者并未表现出病毒易感性增加,且ISG15的抗病毒作用均在小鼠模型中得到验证,表明ISG15的种属差异对其发挥免疫调节作用有至关重要的影响。因此,ISG15在HIV感染者中的作用可能不仅是抑制病毒复制,还有可能与其他IFN信号通路协同作用,参与不同细胞亚群的免疫调节。在明确ISG15对HIV感染不同时期的作用及可发挥作用的细胞群的前提下,探讨其抗病毒效应的临床应用前景,对寻求配合cART治疗的HIV功能性治愈策略具有重要意义。

参考文献
[1]
UNAIDS. Global HIV & AIDS statistics—2018 fact sheet [EB/OL]. [2018-12-03]. http://www.unaids.org/en/resources/fact-sheet.
[2]
Sadler AJ, Williams BR. Interferon-inducible antiviral effectors[J]. Nat Rev Immunol, 2008, 8(7): 559-568. [DOI]
[3]
Perng YC, Lenschow DJ. ISG15 in antiviral immunity and beyond[J]. Nat Rev Microbiol, 2018, 16(7): 423-439. [DOI]
[4]
Dos Santos PF, Mansur DS. Beyond ISGlylation: functions of free intracellular and extracellular ISG15[J]. J Interferon Cytokine Res, 2017, 37(6): 246-253. [DOI]
[5]
Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency[J]. Science, 2012, 337(6102): 1684-1688. [DOI]
[6]
D'Cunha J, Ramanujam S, Wagner RJ, Witt PL, Knight E Jr, Borden EC. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine[J]. J Immunol, 1996, 157(9): 4100-4108.
[7]
Haas AL, Ahrens P, Bright PM, Ankel H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin[J]. J Biol Chem, 1987, 262(23): 11315-11323. [PubMed]
[8]
Knight E Jr, Cordova B. IFN-induced 15-kDa protein is released from human lymphocytes and monocytes[J]. J Immunol, 1991, 146(7): 2280-2284. [PubMed]
[9]
Griesbeck M, Valantin MA, Lacombe K, Samri-Hassimi A, Bottero J, Blanc C, Sbihi Z, Zoorob R, Katlama C, Guiguet M, Altfeld M, Autran B, HepACT-VIH study group. Hepatitis C virus drives increased type Ⅰ interferon-associated impairments associated with fibrosis severity in antiretroviral treatment-treated HIV-1-hepatitis C virus-coinfected individuals[J]. AIDS, 2017, 31(9): 1223-1234. [DOI]
[10]
Au WC, Moore PA, Lowther W, Juang YT, Pitha PM. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes[J]. Proc Natl Acad Sci USA, 1995, 92(25): 11657-11661. [DOI]
[11]
Meraro D, Gleit-Kielmanowicz M, Hauser H, Levi BZ. IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element[J]. J Immunol, 2002, 168(12): 6224-6231. [DOI]
[12]
Owhashi M, Taoka Y, Ishii K, Nakazawa S, Uemura H, Kambara H. Identification of a ubiquitin family protein as a novel neutrophil chemotactic factor[J]. Biochem Biophys Res Commun, 2003, 309(3): 533-539. [DOI]
[13]
Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S, Calzetti F, Colonna M, Bazzoni F, Cassatella MA. Activation of an immunoregulatory and antiviral gene expression program in poly(I: C)-transfected human neutrophils[J]. J Immunol, 2008, 181(9): 6563-6573. [DOI]
[14]
Hsiang TY, Zhao C, Krug RM. Interferon-induced ISG15 conjugation inhibits influenza A virus gene expression and replication in human cells[J]. J Virol, 2009, 83(12): 5971-5977. [DOI]
[15]
Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, Schmidt RE, Levine B, Virgin HT 4th. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo[J]. J Virol, 2005, 79(22): 13974-13983. [DOI]
[16]
Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15[J]. Proc Natl Acad Sci USA, 2006, 103(5): 1440-1445. [DOI]
[17]
Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, Osiak A, Levine B, Schmidt RE, García-Sastre A, Leib DA, Pekosz A, Knobeloch KP, Horak I, Virgin HW 4th. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses[J]. Proc Natl Acad Sci USA, 2007, 104(4): 1371-1376. [DOI]
[18]
Giannakopoulos NV, Arutyunova E, Lai C, Lenschow DJ, Haas AL, Virgin HW. ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus[J]. J Virol, 2009, 83(4): 1602-1610. [DOI]
[19]
Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways[J]. Proc Natl Acad Sci USA, 2005, 102(29): 10200-10205. [DOI]
[20]
Shi HX, Yang K, Liu X, Liu XY, Wei B, Shan YF, Zhu LH, Wang C. Positive regulation of interferon regulatory factor 3 activation by HERC5 via ISG15 modification[J]. Mol Cell Biol, 2010, 30(10): 2424-2436. [DOI]
[21]
Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection[J]. Nat Med, 2004, 10(12): 1374-1378. [DOI]
[22]
Recht M, Borden EC, Knight E Jr. A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma[J]. J Immunol, 1991, 147(8): 2617-2623. [PubMed]
[23]
D'Cunha J, Knight E Jr, Haas AL, Truitt RL, Borden EC. Immunoregulatory properties of ISG15, an interferon-induced cytokine[J]. Proc Natl Acad Sci USA, 1996, 93(1): 211-215. [DOI]
[24]
Su Y, Popik W, Pitha PM. Inhibition of human immunodeficiency virus type 1 replication by a Tat-activated, transduced interferon gene: targeted expression to human immunodeficiency virus type 1-infected cells[J]. J Virol, 1995, 69(1): 110-121. [URI]
[25]
Künzi MS, Pitha PM. Role of interferon-stimulated gene ISG-15 in the interferon-omega-mediated inhibition of human immunodeficiency virus replication[J]. J Interferon Cytokine Res, 1996, 16(11): 919-927. [DOI]
[26]
Guo L, Xu XQ, Zhou L, Zhou RH, Wang X, Li JL, Liu JB, Liu H, Zhang B, Ho WZ. Human intestinal epithelial cells release antiviral factors that inhibit HIV infection of macrophages[J]. Front Immunol, 2018, 9: 247. [DOI]
[27]
Pincetic A, Kuang Z, Seo EJ, Leis J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process[J]. J Virol, 2010, 84(9): 4725-4736. [DOI]
[28]
Woods MW, Kelly JN, Hattlmann CJ, Tong JG, Xu LS, Coleman MD, Quest GR, Smiley JR, Barr SD. Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag[J]. Retrovirology, 2011, 8: 95. [DOI]
[29]
Scagnolari C, Monteleone K, Selvaggi C, Pierangeli A, D'Ettorre G, Mezzaroma I, Turriziani O, Gentile M, Vullo V, Antonelli G. ISG15 expression correlates with HIV-1 viral load and with factors regulating T cell response[J]. Immunobiology, 2016, 221(2): 282-290. [DOI]
[30]
Wu X, Zhang LL, Yin LB, Fu YJ, Jiang YJ, Ding HB, Chu ZX, Shang H, Zhang ZN. Deregulated microRNA-21 expression in monocytes from HIV-infected patients contributes to elevated IP-10 secretion in HIV infection[J]. Front Immunol, 2017, 8: 1122. [DOI]
[31]
Raposo RA, Abdel-Mohsen M, Bilska M, Montefiori DC, Nixon DF, Pillai SK. Effects of cellular activation on anti-HIV-1 restriction factor expression profile in primary cells[J]. J Virol, 2013, 87(21): 11924-11929. [DOI]
[32]
Ranganath N, Sandstrom TS, Fadel S, Côté SC, Angel JB. Type Ⅰ interferon responses are impaired in latently HIV infected cells[J]. Retrovirology, 2016, 13(1): 66. [DOI]
[33]
Zahoor MA, Xue G, Sato H, Murakami T, Takeshima SN, Aida Y. HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages[J]. PLoS One, 2014, 9(8): e106418. [DOI]
[34]
Gao L, Wang Y, Li Y, Dong Y, Yang A, Zhang J, Li F, Zhang R. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells[J]. J Med Virol, 2018, 90(7): 1199-1209. [DOI]
[35]
Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein[J]. EMBO J, 2001, 20(3): 362-371. [URI]
[36]
Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Ménard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease[J]. Arch Biochem Biophys, 2007, 466(1): 8-14. [URI]
[37]
Guerra S, Cáceres A, Knobeloch KP, Horak I, Esteban M. Vaccinia virus E3 protein prevents the antiviral action of ISG15[J]. PLoS Pathog, 2008, 4(7): e1000096. [DOI]
[38]
Arnaud N, Dabo S, Akazawa D, Fukasawa M, Shinkai-Ouchi F, Hugon J, Wakita T, Meurs EF. Hepatitis C virus reveals a novel early control in acute immune response[J]. PLoS Pathog, 2011, 7(10): e1002289. [DOI]
[39]
Wie SH, Du P, Luong TQ, Rought SE, Beliakova-Bethell N, Lozach J, Corbeil J, Kornbluth RS, Richman DD, Woelk CH. HIV downregulates interferon-stimulated genes in primary macrophages[J]. J Interferon Cytokine Res, 2013, 33(2): 90-95. [DOI]
[40]
Osei Kuffour E, Schott K, Jaguva Vasudevan AA, Holler J, Schulz WA, Lang PA, Lang KS, Kim B, Häussinger D, König R, Münk C. USP18 (UBP43) abrogates p21-mediated inhibition of HIV-1[J]. J Virol, 2018, 92(20). [DOI]
[41]
Lu G, Reinert JT, Pitha-Rowe I, Okumura A, Kellum M, Knobeloch KP, Hassel B, Pitha PM. ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation[J]. Cell Mol Biol (Noisy-le-grand), 2006, 52(1): 29-41. [URI]
[42]
Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM. HIV-1 accessory proteins Vpr and Vif modulate antiviral response by targeting IRF-3 for degradation[J]. Virology, 2008, 373(1): 85-97. [URI]
[43]
Jain P, Boso G, Langer S, Soonthornvacharin S, De Jesus PD, Nguyen Q, Olivieri KC, Portillo AJ, Yoh SM, Pache L, Chanda SK. Large-scale arrayed analysis of protein degradation reveals cellular targets for HIV-1 Vpu[J]. Cell Rep, 2018, 22(9): 2493-2503. [DOI]
[44]
Mahony R, Gargan S, Roberts KL, Bourke N, Keating SE, Bowie AG, O'Farrelly C, Stevenson NJ. A novel anti-viral role for STAT3 in IFN-α signalling responses[J]. Cell Mol Life Sci, 2017, 74(9): 1755-1764. [DOI]
[45]
Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O'Farrelly C, Borrow P, Bergin C, Stevenson NJ. HIV-1 promotes the degradation of components of the type 1 IFN JAK/STAT pathway and blocks anti-viral ISG induction[J]. EBioMedicine, 2018, 30: 203-216. [DOI]
[46]
Speer SD, Li Z, Buta S, Payelle-Brogard B, Qian L, Vigant F, Rubino E, Gardner TJ, Wedeking T, Hermann M, Duehr J, Sanal O, Tezcan I, Mansouri N, Tabarsi P, Mansouri D, Francois-Newton V, Daussy CF, Rodriguez MR, Lenschow DJ, Freiberg AN, Tortorella D, Piehler J, Lee B, García-Sastre A, Pellegrini S, Bogunovic D. ISG15 deficiency and increased viral resistance in humans but not mice[J]. Nat Comm, 2016, 7: 11496. [DOI]

文章信息

吴还梅, 卢洪洲
WU Huanmei, LU Hongzhou
干扰素刺激基因15在人类免疫缺陷病毒感染中作用的研究进展
Role of interferon-stimulated gene 15 in human immunodeficiency virus infection
微生物与感染, 2019, 14(1): 52-58.
Journal of Microbes and Infections, 2019, 14(1): 52-58.
通信作者
卢洪洲
基金项目
“十三五”国家科技重大专项(2017ZX09304027),复旦大学研究生科研资助项目(IAH6281520/073)

工作空间