文章快速检索     高级检索
  微生物与感染  2022, Vol. 17 Issue (1): 55-64      DOI: 10.3969/j.issn.1673-6184.2022.01.008
0
Contents            PDF            Abstract             Full text             Fig/Tab
呼吸道合胞病毒疫苗及其抗体制剂的研究进展
吴小英 1 , 孟庆红 2 , 姚开虎 2 , 许红梅 1 , 符州 3     
1. 重庆医科大学附属儿童医院感染科,重庆 400014;
2. 国家儿童医学中心/首都医科大学附属北京儿童医院/北京市儿科研究所微生物研究室/儿科学国家重点学科/教育部儿科重大疾病研究重点实验室,北京 100045;
3. 重庆医科大学附属儿童医院呼吸中心,重庆 400014
摘要:呼吸道合胞病毒(respiratory syncytial virus,RSV)感染是一个全球性的健康问题,目前临床上仍缺乏特异的治疗手段。接种疫苗主动免疫预防或使用抗体制剂被动免疫预防是避免重症感染和减少死亡的重要措施。针对不同的人群,须研制不同类型的RSV疫苗:减毒活疫苗对婴儿来说,可能是最佳选择;亚单位疫苗有引起增强型呼吸道疾病的风险,不适合RSV血清学阴性的婴幼儿接种,主要适用于老年人和孕妇。研发安全且有效的RSV疫苗难度大,虽然已有30余种RSV疫苗进入临床研究阶段,并显示出应用潜力,其中F纳米颗粒疫苗已率先进入Ⅲ期临床试验,但在老年人和孕妇中未达预期效果。在RSV流行季节前,使用特异性抗体制剂也是预防高危人群严重RSV感染性疾病的有效手段。长效单克隆抗体MEDI8897比帕利珠单抗更具成本效益,已进入Ⅲ期临床试验,且获得优先研发资格。多克隆免疫球蛋白RI-002已在免疫缺陷人群中显示出较好的预防效果,具有进一步研发的现实意义。本综述针对近年来RSV疫苗及其抗体的研究进展进行阐述,期望为RSV的预防提供参考。
关键词呼吸道合胞病毒    单克隆抗体    减毒活疫苗    颗粒疫苗    亚单位疫苗    载体疫苗    
Research progress of respiratory syncytial virus vaccine and antibody preparations
WU Xiaoying 1 , MENG Qinghong 2 , YAO Kaihu 2 , XU Hongmei 1 , FU Zhou 3     
1. Department of Infection, Children's Hospital of Chongqing Medical University, Chongqing 400014, China;
2. Key Laboratory of Major Diseases in Children, Ministry of Education/National Key Discipline of Pediatrics(Capital Medical University)/Laboratory of Microbiology, Beijing Pediatric Research Institute/Beijing Children's Hospital, Capital Medical University/National Center for Children's Health, Beijing 100045, China;
3. Respiratory Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
Abstract: Respiratory syncytial virus (RSV) infection is an important global health problem. There is lack of specific treatment methods in clinical practice. Active prevention by vaccination or passive prevention by using antibody preparations are important measures to avoid severe infections and reduce deaths. Different RSV vaccines need to be developed for different populations. There are four main types of RSV vaccines under development. Live attenuated vaccines may be most suitable for infants. Subunit vaccines have the risk of causing enhanced respiratory diseases and are not suitable for infants with negative RSV serum vaccination, but they are mainly suitable for the elderly and pregnant women. Ensuring safety and immunogenicity is an important issue that needs to be solved in the development of RSV vaccines. Although there are many challenges in the development of RSV vaccines, more than 30 RSV vaccines have entered the clinical research stage, showing potential for application. Among them, the F nanoparticle vaccine has taken the lead in entering phase Ⅲ clinical trials, but it has not achieved the expected effect in the elderly and pregnant women. Before the RSV epidemic season, using specific antibody is also an effective means to prevent severe infection in high-risk groups. The long-acting monoclonal antibody MEDI8897, which is more cost-effective than palivizumab, has entered phase Ⅲ clinical trials, and has got priority R&D qualification. Polyclonal immunoglobulin RI-002 has shown good preventive effects in immunodeficiency populations, and has practical significance for further research.
Keywords: Respiratory syncytial virus    Monoclonal antibody    Live attenuated vaccine    Particle-based vaccine    Subunit vaccine    Vectored vaccine    

呼吸道合胞病毒(respiratory syncytial virus,RSV)属于肺炎病毒科家族的正肺病毒属,是一种有包膜的、非分段的、负义RNA病毒[1]。RSV感染可引起全球流行的季节性呼吸道感染,其临床表现从轻度的上呼吸道感染到重症肺炎不等,严重者可致死亡[2]。无论是发展中国家,还是发达国家,每年都有大量因RSV感染住院和死亡的病例,其主要累及婴幼儿、免疫功能低下人群和老年人群[2-4]。儿童RSV感染尤其常见,RSV是引起全球5岁以下儿童急性下呼吸道感染(acute low respiratory infection,ALRI)最主要的病原之一[2]。据RSV全球流行病学网络(RSV Global Epidemiology Network,RSV GEN)监测统计,2015年全球5岁以下儿童中新发RSV所致的ALRI约3 310万例,其中320万例需住院治疗,占所有ALRI住院病例的28%,59 600例死亡,占所有ALRI死亡病例的13%~22%;约45%的RSV-ALRI住院和院内死亡儿童为6月龄内婴儿,99%的死亡出现在发展中国家[2]。上述死亡数据还仅为针对住院RSV感染的统计,社区死亡患儿未包括在内。Ning等[5]针对我国2001—2015年5岁以下儿童社区获得性肺炎进行病原分析,共纳入100 151例儿童病例,发现RSV检出率为17.3%,居病毒病原第2位。2015—2019年,武汉地区因急性呼吸道感染住院的35 552例12岁以下的儿童中,RSV检出率为8.55%,在病毒病原中占第1位[6]。婴儿期严重的RSV感染,还与后期反复喘息和(或)哮喘发病相关[7]。为了减轻RSV对人类健康的影响,急需一种安全、有效、经济的RSV预防策略,WHO将RSV疫苗研发列为优先发展的全球疫苗计划之一,并组织开展了大量相关研究,部分产品已进入临床试验阶段[8]。虽然,我国临床亦重视RSV对群体健康的危害,但国内特异性预防措施研究的相关报道还并不多[9],唯一可用于RSV预防的人源化特异性抗体帕利珠单抗尚未引进国内临床使用[9-10]。鉴于此,本文对RSV疫苗和抗体制剂研究的最新进展及面临的问题进行综述,重点介绍已在临床试验阶段的相关研究,希望能引起国内同行的重视,促进相关研究的开展。

1 RSV分子生物学特征

RSV基因组大小约15~16 kb,编码11种蛋白,包括8种结构蛋白和3种非结构蛋白(NS1、NS2和M2-2),结构蛋白包括3种跨膜表面蛋白(G、F、SH)、2种基质蛋白(M和M2-1)、3种核壳蛋白(L、N和P)[8, 11]。G蛋白介导病毒与宿主细胞的结合,F蛋白介导病毒与宿主细胞膜的融合,使病毒进入细胞内,二者对于病毒复制至关重要,且均含有B细胞和T细胞表位,是刺激机体产生体液和细胞免疫最重要的病毒抗原蛋白[11-12]。G蛋白编码区变异大,基于其变异可分为A亚型和B亚型,G蛋白诱导的中和抗体具有亚型特异性;F蛋白编码区高度保守,A亚型和B亚型的F蛋白氨基酸序列至少有90%相同,故F蛋白诱导的中和抗体可以同时抑制A、B亚型RSV感染[11-12]

F蛋白结构呈动态变化,首先在宿主细胞中被转录翻译为单个无活性多肽(F0);接着经宿主细胞弗林蛋白酶(furin protease)第1次切割,生成部分切割的融合前祖蛋白(prefusogenic protein);随后发生第2次弗林蛋白酶切割,生成F2和F1亚基,2个亚基以2个二硫共价键连接为一个单体,然后3个单体形成亚稳态的功能性融合前F蛋白(prefusion protein)三聚体;此后无须进一步处理即可进行构象重排形成热力学稳定的融合后F蛋白(postfusion protein);两次弗林蛋白酶切割、构象重排的时间和细胞位置尚不完全清楚,诱发构象重排的条件也不明确[12-14]。F蛋白表面,与中和活性有关的抗原表位主要有Ⅱ、Ⅳ、Ⅷ和Ø 4种,其中表位Ⅱ和Ⅳ存在于融合前和融合后的F蛋白;Ⅷ和Ø是融合前F蛋白特异性抗原位点,融合后F蛋白没有这2种表位[11, 13]。流行病学研究表明,RSV中和抗体可预防严重的RSV-ALRI[15-16],表位Ø单抗的中和活性是表位Ⅱ单抗的10~100倍[17],表位Ⅷ单抗的中和活性也很高[18],因此,血清中大多数RSV中和活性仅针对融合前F蛋白抗原位点。诱导高滴度的中和抗体是开发RSV疫苗的主要目标,具有特异性抗原表位的融合前F蛋白则成为最热门的RSV疫苗靶标,但融合前F蛋白本质上是一种不稳定的蛋白,对其进行多种稳定性修改但又不损失重要的抗原表位,是RSV疫苗研发中的难点之一。

2 RSV感染的免疫预防

WHO防控RSV感染的目的是预防高危人群的严重RSV感染性疾病,降低住院率和病死率[19]。最为重要的是,保护脆弱的婴幼儿,因此,WHO确定了2个优先研发方向:①优先研发孕期母体免疫疫苗或长效单克隆抗体,以预防新生儿和6月龄内婴儿严重RSV相关疾病;②优先研发儿童免疫疫苗,一旦母传抗体所提供的保护减弱,就对婴幼儿(6月龄以上)进行免疫接种[19]。也就是说,优先发展的方向包括通过疫苗主动免疫、通过提高母传抗体水平或给予外源性抗体的被动免疫2种措施来重点保护婴幼儿免于严重RSV感染性疾病。

2.1 主动免疫预防

理想的RSV疫苗须诱导针对多个中和位点的高效价抗体,并将诱导突变毒株的可能性降至最低,最佳预防效果是否须同时诱导血清IgG、黏膜IgA和细胞免疫,尚不明确。安全性和免疫原性是RSV疫苗研发面临的主要挑战。其中,最严重的安全性问题是福尔马林灭活疫苗可能导致RSV血清阴性儿童发生增强型RSV感染相关呼吸道疾病(enhanced respiratory disease,ERD),这可能是由于福尔马林的灭活条件不能使F蛋白稳定在融合前构象,丢失了融合前F蛋白特异性抗原表位,进而无法诱导产生有效的中和抗体,从而引起一系列导致疾病严重的后续反应[20]。免疫原性评估也受到接种者免疫状态等因素的影响,如小婴儿免疫系统不成熟,又可能有母传抗RSV抗体可抑制机体对疫苗的免疫应答;老年人免疫力低,对疫苗免疫反应低,既往RSV感染后免疫状况对疫苗免疫原性也可能有负面影响。此外,缺乏良好的模拟人体感染RSV的动物模型,也缺乏精确评估受试人群临床疾病严重程度的标记物,这些因素均阻碍了疫苗的研发。

已有研究表明,很难设计一种适合所有目标人群的RSV疫苗,须根据不同人群的特点研制不同的RSV疫苗。减毒活疫苗、病毒载体疫苗、纳米颗粒疫苗、亚单位疫苗是目前处于临床研究阶段的主要疫苗类型[8]。病毒非复制型RSV疫苗(如亚单位疫苗)针对孕妇以及其他非幼稚人群(大年龄儿童、老年人);6月龄以上RSV血清阴性儿童适合接种复制型疫苗(减毒活疫苗或载体疫苗)[8, 21]。目前,许多疫苗还处于临床前研发阶段,2020年Biagi等[22]总结:目前有30余种候选RSV疫苗已进入临床试验阶段,其中儿童疫苗21种,包含14种减毒活疫苗、4种载体疫苗、2种颗粒疫苗、1种嵌合疫苗;老年疫苗9种,包含4种载体疫苗、3种亚单位疫苗、2种颗粒疫苗;孕妇疫苗4种,包含3种亚单位疫苗、1种颗粒疫苗。

2.1.1 减毒活疫苗

研发中的RSV减毒活疫苗是利用反向遗传学方法,通过克隆的cDNA将预定的变异(减毒点突变或缺失非必要基因)插入活RSV中,从而获得减毒和较强免疫原性的活RSV毒株[23]。一般认为,减毒活疫苗中的病毒能够复制,模拟自然感染,不会引起ERD,恢复到野生型致病的可能性也很小,安全性较高。此外,减毒活疫苗还具有其他优点:滴鼻的接种方法易被儿童接受,耐受性好;存在母源抗体时,仍可在上呼吸道中复制,小婴儿成功接种率高;可广泛刺激呼吸道局部和全身的固有免疫、体液及细胞免疫,可预防上、下呼吸道感染。因此,对血清阴性儿童来说,减毒活RSV疫苗是最适合的候选疫苗。此类疫苗研发面临的最大困难是平衡减毒和免疫原性。活病毒具有不稳定特性,对疫苗生产、储存和运输的要求更复杂。

构建减毒RSV活疫苗的2种最重要的手段是去除病毒的M2-2和NS2基因[24-25]。去除M2-2基因可抑制RSV复制,使病毒充分减毒,并可增加F蛋白和G蛋白的表达,增强免疫原性[24]NS2基因缺失后RSV复制能力降低,但刺激机体产生干扰素的水平提高,固有免疫增强[26]。候选疫苗LID/ΔM2-2/1 030 s去除M2-2基因的同时,还插入了温度敏感表型点突变1 030 s,其Ⅰ期临床试验在6~24月龄血清阴性婴幼儿中进行,结果显示有很好的遗传稳定性,并可诱导机体产生持久的中和抗体和记忆性B细胞[24],但20例接种者中有12例接种后出现呼吸道症状和(或)发热,安慰剂组11例中有3例,此类反应常见的原因可能与接种后随即而来的RSV流行季节呼吸道容易感染其他病原体有一定的关系,因为12例接种者中有9例在洗鼻标本中检出其他病原体,3例安慰剂组中检出1例,但3例接种者洗鼻标本中检出疫苗病毒,故须进一步评估其安全性。候选疫苗MEDI-559在M2-1和M2-2基因中引入了5个突变,是目前唯一进入IIa期临床试验的减毒活疫苗[27]。在对5~24月龄RSV血清学阴性的儿童进行MEDI-559的Ⅰ期临床试验的过程中,发现248 s、404 s和1 030 s突变不稳定,导致41.7%(5/12)的毒株丢失温度敏感表型[27]。候选疫苗RSVcps2在疫苗MEDI-559的基础上进行改进,将构建原248突变的831L(TTA)改为831L(TTG),构建原1 030突变的天冬酰胺[1321N(AAT)]改为赖氨酸[1321K(AAA)],密码子1313S(AGC)改为1313S(TCA)[28]。有研究发现,在6~24月龄的RSV血清阴性的儿童中接种RSVcps2,其248 s和1 030 s突变位点的遗传稳定性明显提高,疫苗病毒脱落高峰期洗鼻液标本分离病原的序列分析显示,95.8%(23/24)的分离毒株未发生遗传学改变[28]。候选疫苗RSV/ΔNS2/Δ1313/I1314L去除NS2基因和1 313位密码子,并引入I1314L突变,获得了稳定的温度敏感表型,在RSV血清阴性儿童中的Ⅰ期临床试验结果表明,减毒充分且具有免疫原性[25]。唯一的嵌合减毒活疫苗rBCG-N-HRSV也正在健康成人中进行Ⅰ期临床试验[29]

2.1.2 病毒载体疫苗

病毒载体疫苗使用病毒作为载体来表达RSV抗原(如F、G、N、M2-1等),载体的佐剂作用提高了疫苗免疫原性,N和M2-1蛋白富含T细胞识别位点,可增强T细胞介导的免疫应答[30]。与减毒活疫苗类似,病毒载体疫苗可刺激机体产生包括呼吸道黏膜IgA抗体在内的体液、细胞和固有免疫。最常用的载体是腺病毒。给新生和成年小鼠接种RSV载体疫苗,未观察到ERD迹象[31],病毒载体疫苗亦适合6月龄以上血清阴性儿童接种。但是,宿主体内存在的抗载体免疫可能会为这些疫苗的临床应用带来挑战。

使用人腺病毒26作为载体的Ad26.RSV.PreF,可表达构象稳定的融合前F蛋白,能够诱导机体产生针对融合前F蛋白抗原表位的高滴度中和抗体,目标人群是老年人和儿童[32-33]。在健康老年人中已完成了Ⅰ期和Ⅱ期临床试验,仅观察到1例(Ⅱ期临床试验中)疫苗相关的严重不良反应(高血压危象和心动过缓),具有可接受的安全性,单次免疫后可引起持续2年的体液和细胞免疫应答[32-33]。Ⅱ期临床评估时联合接种季节性流感疫苗,未发现2种疫苗的免疫反应存在相互干扰[33]。RSV血清阴性儿童、血清阳性儿童和健康成人接种Ad26.RSV.PreF的效应,尚待临床评估。另一种腺病毒载体疫苗ChAd155-RSV,以黑猩猩腺病毒155为载体,表达RSV的F、N和M2-1蛋白,Ⅰ期临床试验结果显示,健康成人接种30天时,中和抗体几何平均滴度是接种前的2.6倍,分泌F蛋白特异性干扰素γ的T细胞中位数是接种前的3.1倍,未观察到导致试验终止或死亡等的严重不良反应,具有较好的免疫原性和可接受的安全性[34]

亦有一些病毒载体候选RSV疫苗使用其他病毒作为载体。疫苗MVA-BN-RSV以改良的安卡拉痘苗病毒(MVA)作为载体,表达RSV的F、G、N和M2-1蛋白,以老年人为接种目标[35]。Ⅱ期临床试验结果显示,MVA-BN-RSV最常见的不良反应是注射局部疼痛,无严重不良反应,接种1剂,可诱导至少持续6个月的细胞和体液免疫应答;初次免疫后12个月时加强接种1剂可增强体液和细胞免疫,其中体液免疫以血清IgA增强最明显,加强接种2周时血清IgA几何平均倍数增幅(geometric mean fold increases,GMFI)比加强接种前增加了2.1倍,细胞免疫以M2蛋白刺激的外周血T细胞免疫应答增强最为显著,加强接种1周时其GMFI较于加强前增加了2.8倍[35]。疫苗Medi-534以牛/人嵌合副流感病毒3作为载体,表达RSV-F蛋白,期望能同时诱导针对这2种病毒的免疫反应[36]。此疫苗在Ⅰ期临床试验中受试者耐受性良好,但针对RSV的免疫应答率只有50%,可能与疫苗某些病毒中RSV F非编码区和(或)F开放阅读框的基因改变有关[36]。重组仙台病毒RSV疫苗(SeVRSV) 以鼠/人嵌合副流感病毒1作为载体,表达RSV的F蛋白,其Ⅰ期临床试验也显示免疫原性不足,健康成人接种后28天时,RSV-F特异性抗体的GMFI仅为1.1,没有一例抗体滴度升高4倍以上[37]

2.1.3 纳米颗粒疫苗

纳米颗粒疫苗由自组装的纳米颗粒抗原组成,表面含有高拷贝数的RSV抗原蛋白,免疫原性较好,增加佐剂可进一步提高免疫原性并靶向呈递抗原[38]。其目标接种人群包括6月龄以上儿童、孕妇及老年人。

RSV F纳米颗粒疫苗由引入弗林蛋白酶切割位点Ⅱ突变而获得的融合前祖蛋白寡聚体组成,研究表明融合前祖蛋白可诱导针对Ⅱ、Ⅳ、Ⅷ、Ø 4个抗原位点的高亲和力抗体,可抵御帕利株单抗耐药突变株感染[13]。RSV F纳米颗粒疫苗的Ⅰ期和Ⅱ期临床试验均显示其具有良好的安全性和免疫原性[39-40],率先进入孕妇和老年人接种的Ⅲ期临床评估,却未达到降低RSV-ALRI发病率的预期目标[21, 41]。但是此疫苗表现出其他有效性的趋势:若孕妇接种磷酸铝佐剂型RSV F纳米颗粒疫苗,其后代出生90天内RSV相关的ALRI住院率有所降低,疫苗效力为44.4% [41];老年人接种无佐剂型RSV F纳米颗粒疫苗,慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)恶化相关的住院率降低了61%[21]。因此,RSV F纳米颗粒疫苗的保护力仍值得进一步研究。最近有研究表明,老年人接种含佐剂(磷酸铝或Matrix-M1)型RSV F纳米颗粒疫苗2剂次,可诱导出高强度、持久的免疫应答,且耐受性良好[22]

另一进入临床评估的纳米颗粒疫苗是SynGEM,用衍生自乳酸乳球菌的细菌样颗粒(BLP)作为佐剂和载体,表达重组融合前F蛋白,于鼻腔内接种[42]。Ⅰ期临床试验表现出较好的耐受性,诱导的体液免疫可持续至少6个月,但未检测到Ø表位特异性抗体,可能的原因是F蛋白融合前构象不稳定[42]

2.1.4 亚单位疫苗

亚单位疫苗由具有免疫原性的RSV蛋白组成,多采用F蛋白,少数采用G蛋白或SH蛋白,抗原成分较少,且在体内不能复制,一般来说免疫原性较差,须添加佐剂或多次接种来诱导持续的免疫应答[43-44]。这类疫苗主要诱导CD4+T细胞和B细胞应答,血清阴性婴儿接种后发生ERD的风险较高,因此目标人群主要是感染过RSV的孕妇、老年人[43-44]

采用蛋白质重组技术改造融合前F蛋白,获得相对稳定的融合前F蛋白变异体DS-Cav1,以此构建候选疫苗VRC-RSVRGP084-00-VP,其目标接种人群是孕妇[43]。Ⅰ期临床试验数据显示:健康成人接种VRC-RSVRGP084-00-VP后,融合前F蛋白特异性抗原表位的血清中和抗体活性可增加10倍以上[43]。但有研究发现,液体DS-Cav1在4 ℃下保存102天后发生构象变化,其特异性抗原位点丢失[12],这可能会影响候选疫苗的保护效果,研发更为稳定的冻干疫苗可能是一种解决方案[45]。MEDI-7510是含融合后F蛋白的亚单位疫苗,可能由于缺乏融合前F蛋白特异性抗原表位,其免疫原性低,无法刺激机体产生足够的中和抗体,临床试验观察,老年人接种后未达到降低RSV相关呼吸道疾病的预期目标[46]。已有研究提示,选择合适的蛋白构象并采用创新技术保持构象和存储的稳定性,是RSV-F蛋白亚单位疫苗取得成功的关键因素。

2.2 被动免疫预防

针对RSV的特异性抗体不仅是RSV感染治疗药物的研究方向,也是预防RSV感染的重要研发策略,并且已有用于预防的产品上市。

2.2.1 单克隆抗体

帕利珠单抗靶向RSV的F蛋白表位Ⅱ,是第一个用来预防RSV相关ALRI的特异性单克隆抗体,早在1998年就获得美国食品药品监督管理局(Food and Drug Administration,FDA)的批准用于临床[47]。一般在当地RSV感染流行前1月开始,每月肌注1次帕利珠单抗,每次15 mg/kg,最多5次[47]。帕利珠单抗需多次注射,影响接受度,且其费用昂贵,仅推荐给高风险婴儿和儿童使用[47]。使用靶向单一表位的单克隆抗体可能诱导免疫逃逸突变毒株,美国、日本、加拿大等国家均已监测到对帕利株单抗耐药的突变株,且有增多的流行趋势[13],这无疑给RSV的预防增加了新的困难。需要注意的是,已有研究提示帕利珠单抗对RSV感染的治疗无效[10]

MEDI8897又称为尼司维单抗(nirsevimab),有可能弥补帕利株单抗需多次注射的短处,它源自D25的重组人免疫球蛋白G1κ单克隆抗体,靶向融合前F蛋白Ø表位,通过修饰Fc结构域,可延长其血清半衰期[48]。MEDI8897已获得美国FDA快速通道研发资格认定,临床前研究表明MEDI8897的中和活性比帕利珠单抗高50倍以上[49]。Ⅰb/Ⅱa期临床研究发现,给健康早产婴儿肌肉注射MEDI8897后,不良反应发生率与安慰剂组类似,体内半衰期长达62.5~72.9天(帕利珠单抗仅为19~27天)[48],另一研究报道其半衰期长达85~117天[50]。MEDI8897还具有强大的中和活性,单次肌肉注射后通常可在5个月的RSV流行期内发挥持续预防RSV相关ALRI的作用[48, 51],一项Ⅱb期临床试验在南北半球共23个国家地区的164个地点招募了1 453例健康早产儿,实验组(969例)接受单次肌肉注射MEDI8897(50 mg),其接受药物治疗的RSV-ALRI发生率和住院率分别比安慰剂组(484例)低70.1%和78.4%。我国国家食品药品监督管理局药品审评中心官网(https://www.cde.org.cn/)最新公示,MEDI8897已正式获准纳入我国突破性治疗药物程序,这意味着药品审评中心将为其优先配置评审资源,大大缩减其从研发到上市的时间。

ALX0171靶向RSV的F蛋白表位Ⅱ,在体外和棉鼠体内均能明显阻断RSV的复制[52],是目前研发的首个雾化吸入型纳米单克隆抗体,有望用于临床治疗。最新一项Ⅱb期临床试验把1~24月龄因RSV-ALRI住院的患儿随机分为4组,分别雾化吸入低(3 mg/kg)、中(6 mg/kg)、高(9 mg/kg)3种剂量的ALX0171及安慰剂,结果显示ALX0171具有明显的抗病毒活性,但在改善临床症状(全球严重度评分、呼吸窘迫、氧饱和度、喂养耐受等)方面无明显疗效,这提示一旦发生了RSV-ALRI,针对RSV的抗病毒药物可能无法改善临床进程,减轻RSV感染的危害重在预防[53]

2.2.2 多克隆免疫球蛋白

使用多克隆免疫球蛋白预防RSV感染可追溯到20世纪90年代[4]。在有先天性心脏病、支气管肺发育不良或早产(≤35周)等RSV感染高危因素的48月龄内儿童中,于RSV流行季前使用RSV-静脉注射用人免疫球蛋白(intravenous immunoglobulin,IVIG),每次750 mg/kg,每月1次,一般3~5次,明显降低了RSV-ALRI的发病率(治疗组8.6%,对照组22.5%)和住院率(治疗组7.4%,对照组20.2%),并减轻了RSV-ALRI的严重程度,与对照组相比,治疗组总住院天数减少了63%,重症监护天数减少了97%[54]。但随着帕利珠单抗的上市,RSV-IVIG退出市场。近年来,人们逐渐认识到帕利株单抗存在接受度较差、价格昂贵、诱导耐药的局限性,多克隆免疫球蛋白再次受到重视。多克隆免疫球蛋白RI-002含有针对多种RSV抗原和其他呼吸道病原体的中和抗体,其抗RSV-F和抗RSV-G中和抗体滴度比普通商用IVIG至少高1.5倍[4]。一项Ⅲ期开放性临床研究纳入59例3~74岁的原发性免疫缺陷患者,采用每3~4周静脉注射1次RI-002、每次300~800 mg/kg的方案(允许调整剂量以保持最低IgG浓度高于500 mg/dL),结果表明患者对RI-002耐受性良好,在一年的观察期内RSV及其他病毒感染性疾病的发病率降低,且无1例发生严重的细菌感染[4]

3 结论

RSV感染对人类健康有严重的危害,疫苗和抗体制剂研发对预防RSV感染、减少重症和死亡病例具有重要意义。随着对RSV分子结构及机体对RSV免疫应答等方面认识的深入,RSV疫苗研发工作不断向前推进,目前已有30多种候选疫苗进入临床试验阶段。对不同的高危感染人群,应研发不同类型的RSV疫苗。目前在研发中的4大类RSV候选疫苗各有优势和局限性,保证疫苗的安全性和免疫原性是研发面临的主要挑战。其中已有一种疫苗进入Ⅲ期临床试验,但未达到预期结果,还须进一步评估。特定高危人群的被动免疫是另一种预防选择,尽管受益范围有限,目前帕利珠单抗已开始临床应用。比帕利珠单抗更具成本效益的长效单克隆抗体MEDI8897已进入Ⅲ期临床试验,且获得优先研发资格,具有更广阔的应用前景。多克隆免疫球蛋白RI-002已在免疫缺陷人群中显示出较好的预防效果,成本较低,也具有开发应用的现实意义。

参考文献
[1]
Afonso CL, Amarasinghe GK, Bányai K, Bào Y, Basler CF, Bavari S, Bejerman N, Blasdell KR, Briand FX, Briese T, Bukreyev A, Calisher CH, Chandran K, Chéng J, Clawson AN, Collins PL, Dietzgen RG, Dolnik O, Domier LL, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Farkas SL, Freitas-Astúa J, Formenty P, Fouchier RA, Fù Y, Ghedin E, Goodin MM, Hewson R, Horie M, Hyndman TH, Jiāng D, Kitajima EW, Kobinger GP, Kondo H, Kurath G, Lamb RA, Lenardon S, Leroy EM, Li CX, Lin XD, Liú L, Longdon B, Marton S, Maisner A, Mühlberger E, Netesov SV, Nowotny N, Patterson JL, Payne SL, Paweska JT, Randall RE, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Shi M, Smither SJ, Stenglein MD, Stone DM, Takada A, Terregino C, Tesh RB, Tian JH, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Verbeek M, Volchkov VE, Wahl-Jensen V, Walsh JA, Walker PJ, Wang D, Wang LF, Wetzel T, Whitfield AE, Xiè JT, Yuen KY, Zhang YZ, Kuhn JH. Taxonomy of the order Mononegavirales: update 2016[J]. Arch Virol, 2016, 161(8): 2351-2360. [DOI]
[2]
Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, Alassani I, Ali A, Antonio M, Awasthi S, Awori JO, Azziz-Baumgartner E, Baggett HC, Baillie VL, Balmaseda A, Barahona A, Basnet S, Bassat Q, Basualdo W, Bigogo G, Bont L, Breiman RF, Brooks WA, Broor S, Bruce N, Bruden D, Buchy P, Campbell S, Carosone-Link P, Chadha M, Chipeta J, Chou M, Clara W, Cohen C, de Cuellar E, Dang DA, Dash-Yandag B, Deloria-Knoll M, Dherani M, Eap T, Ebruke BE, Echavarria M, de Freitas Lázaro Emediato CC, Fasce RA, Feikin DR, Feng L, Gentile A, Gordon A, Goswami D, Goyet S, Groome M, Halasa N, Hirve S, Homaira N, Howie SRC, Jara J, Jroundi I, Kartasasmita CB, Khuri-Bulos N, Kotloff KL, Krishnan A, Libster R, Lopez O, Lucero MG, Lucion F, Lupisan SP, Marcone DN, McCracken JP, Mejia M, Moisi JC, Montgomery JM, Moore DP, Moraleda C, Moyes J, Munywoki P, Mutyara K, Nicol MP, Nokes DJ, Nymadawa P, da Costa Oliveira MT, Oshitani H, Pandey N, Paranhos-Baccalà G, Phillips LN, Picot VS, Rahman M, Rakoto-Andrianarivelo M, Rasmussen ZA, Rath BA, Robinson A, Romero C, Russomando G, Salimi V, Sawatwong P, Scheltema N, Schweiger B, Scott JAG, Seidenberg P, Shen K, Singleton R, Sotomayor V, Strand TA, Sutanto A, Sylla M, Tapia MD, Thamthitiwat S, Thomas ED, Tokarz R, Turner C, Venter M, Waicharoen S, Wang J, Watthanaworawit W, Yoshida LM, Yu H, Zar HJ, Campbell H, Nair H. RSV Global Epidemiology Network. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study[J]. Lancet, 2017, 390(10098): 946-958. [DOI]
[3]
Shi T, Denouel A, Tietjen AK, Campbell I, Moran E, Li X, Campbell H, Demont C, Nyawanda BO, Chu HY, Stoszek SK, Krishnan A, Openshaw P, Falsey AR, Nair H. RESCEU Investigators. Global disease burden estimates of respiratory syncytial virus-associated acute respiratory infection in older adults in 2015: a systematic review and meta-analysis[J]. J Infect Dis, 2020, 222(Suppl7): S577-S583. [DOI]
[4]
Wasserman RL, Greener BN, Mond J. Ri-002, an intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses for use in primary immunodeficiency disease and other immune compromised populations[J]. Expert Rev Clin Immunol, 2017, 13(12): 1107-1119. [DOI]
[5]
Ning G, Wang X, Wu D, Yin Z, Li Y, Wang H, Yang W. The etiology of community-acquired pneumonia among children under 5 years of age in mainland China, 2001-2015: a systematic review[J]. Hum Vaccin Immunother, 2017, 13(11): 2742-2750. [DOI]
[6]
吴泽刚, 黎知青, 顾剑, 吴青, 李艳. 2015—2019年武汉地区儿童急性呼吸道感染常见病毒流行研究[J]. 微循环学杂志, 2020, 30(4): 45-49. [DOI]
[7]
Wu P, Hartert TV. Evidence for a causal relationship between respiratory syncytial virus infection and asthma[J]. Expert Rev Anti Infect Ther, 2011, 9(9): 731-745. [DOI]
[8]
Mejias A, Rodríguez-Fernández R, Oliva S, Peeples ME, Ramilo O. The journey to a respiratory syncytial virus vaccine[J]. Ann Allergy Asthma Immunol, 2020, 125(1): 36-46. [DOI]
[9]
国家呼吸系统疾病临床医学研究中心, 中华医学会儿科学分会呼吸学组, 中国医师协会呼吸医师分会儿科呼吸工作委员会, 中国医药教育协会儿科专业委员会, 中国研究型医院学会儿科学专业委员会, 中国非公立医疗机构协会儿科专业委员会, 中国中药协会儿童健康与药物研究专业委员会, 中国医药新闻信息协会儿童安全用药分会, 中国医疗保健国际交流促进会分子诊断学分会儿科感染学部, "六一健康快车"项目专家委员会, 全球儿科呼吸联盟. 儿童呼吸道合胞病毒感染诊断、治疗和预防专家共识[J]. 中华实用儿科临床杂志, 2020, 35(4): 241-250. [DOI]
[10]
Alansari K, Toaimah FH, Almatar DH, El Tatawy LA, Davidson BL, Qusad MIM. Monoclonal antibody treatment of RSV bronchiolitis in young infants: a randomized trial[J]. Pediatrics, 2019, 143(3): e20182308. [DOI]
[11]
McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial virus surface glycoproteins[J]. Curr Top Microbiol Immunol, 2013, 372: 83-104. [DOI]
[12]
Beugeling M, De Zee J, Woerdenbag HJ, Frijlink HW, Wilschut JC, Hinrichs WLJ. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly[J]. Expert Rev Vaccines, 2019, 18(9): 935-950. [DOI]
[13]
Gilbert BE, Patel N, Lu H, Liu Y, Guebre-Xabier M, Piedra PA, Glenn G, Ellingsworth L, Smith G. Respiratory syncytial virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge[J]. Vaccine, 2018, 36(52): 8069-8078. [DOI]
[14]
Patel N, Tian JH, Flores R, Jacobson K, Walker M, Portnoff A, Gueber-Xabier M, Massare MJ, Glenn G, Ellingsworth L, Smith G. Flexible RSV prefusogenic fusion glycoprotein exposes multiple neutralizing epitopes that may collectively contribute to protective immunity[J]. Vaccines (Basel), 2020, 8(4): 607. [DOI]
[15]
Anderson EJ, Carosone-Link P, Yogev R, Yi J, Simões EAF. Effectiveness of palivizumab in high-risk infants and children: a propensity score weighted regression analysis[J]. Pediatr Infect Dis J, 2017, 36(8): 699-704. [DOI]
[16]
Capella C, Chaiwatpongsakorn S, Gorrell E, Risch ZA, Ye F, Mertz SE, Johnson SM, Moore-Clingenpeel M, Ramilo O, Mejias A, Peeples ME. Prefusion F, postfusion F, G antibodies, and disease severity in infants and young children with acute respiratory syncytial virus infection[J]. J Infect Dis, 2017, 216(11): 1398-1406. [DOI]
[17]
McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T, Kumar A, Modjarrad K, Zheng Z, Zhao M, Xia N, Kwong PD, Graham BS. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody[J]. Science, 2013, 340(6136): 1113-1117. [DOI]
[18]
Mousa JJ, Kose N, Matta P, Gilchuk P, Crowe JE Jr. A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein[J]. Nat Microbiol, 2017, 2: 16271. [DOI]
[19]
Vekemans J, Moorthy V, Giersing B, Friede M, Hombach J, Arora N, Modjarrad K, Smith PG, Karron R, Graham B, Kaslow DC. Respiratory syncytial virus vaccine research and development: World Health Organization technological roadmap and preferred product characteristics[J]. Vaccine, 2019, 37(50): 7394-7395. [DOI]
[20]
Killikelly AM, Kanekiyo M, Graham BS. Pre-fusion F is absent on the surface of formalin-inactivated respiratory syncytial virus[J]. Sci Rep, 2016, 6: 34108. [DOI]
[21]
Rossey I, Saelens X. Vaccines against human respiratory syncytial virus in clinical trials, where are we now?[J]. Expert Rev Vaccines, 2019, 18(10): 1053-1067. [DOI]
[22]
Biagi C, Dondi A, Scarpini S, Rocca A, Vandini S, Poletti G, Lanari M. Current state and challenges in developing respiratory syncytial virus vaccines[J]. Vaccines (Basel), 2020, 8(4): 672. [DOI]
[23]
Karron RA, Buchholz UJ, Collins PL. Live-attenuated respiratory syncytial virus vaccines[J]. Curr Top Microbiol Immunol, 2013, 372: 259-284.
[24]
McFarland EJ, Karron RA, Muresan P, Cunningham CK, Libous J, Perlowski C, Thumar B, Gnanashanmugam D, Moye J, Schappell E, Barr E, Rexroad V, Fearn L, Spector SA, Aziz M, Cielo M, Beneri C, Wiznia A, Luongo C, Collins P, Buchholz UJ. Live respiratory syncytial virus attenuated by M2-2 deletion and stabilized temperature sensitivity mutation 1030 s is a promising vaccine candidate in children[J]. J Infect Dis, 2020, 221(4): 534-543. [DOI]
[25]
Karron RA, Luongo C, Mateo JS, Wanionek K, Collins PL, Buchholz UJ. Safety and immunogenicity of the respiratory syncytial virus vaccine RSV/ΔNS2/Δ1313/I1314L in RSV-Seronegative Children[J]. J Infect Dis, 2020, 222(1): 82-91. [DOI]
[26]
Sedeyn K, Schepens B, Saelens X. Respiratory syncytial virus nonstructural proteins 1 and 2: exceptional disrupters of innate immune responses[J]. PLoS Pathog, 2019, 15(10): e1007984. [DOI]
[27]
Malkin E, Yogev R, Abughali N, Sliman J, Wang CK, Zuo F, Yang CF, Eickhoff M, Esser MT, Tang RS, Dubovsky F. Safety and immunogenicity of a live attenuated RSV vaccine in healthy RSV-seronegative children 5 to 24 months of age[J]. PLoS One, 2013, 8(10): e77104. [DOI]
[28]
Buchholz UJ, Cunningham CK, Muresan P, Gnanashanmugam D, Sato P, Siberry GK, Rexroad V, Valentine M, Perlowski C, Schappell E, Thumar B, Luongo C, Barr E, Aziz M, Yogev R, Spector SA, Collins PL, McFarland EJ, Karron RA, International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) P1114 Study Team. Live respiratory syncytial virus (RSV) vaccine candidate containing stabilized temperature-sensitivity mutations is highly attenuated in RSV-seronegative infants and children[J]. J Infect Dis, 2018, 217(9): 1338-1346. [DOI]
[29]
Cautivo KM, Bueno SM, Cortes CM, Wozniak A, Riedel CA, Kalergis AM. Efficient lung recruitment of respiratory syncytial virus-specific Th1 cells induced by recombinant bacillus calmette-guérin promotes virus clearance and protects from infection[J]. J Immunol, 2010, 185(12): 7633-7645. [DOI]
[30]
Anderson R, Huang Y, Langley JM. Prospects for defined epitope vaccines for respiratory syncytial virus[J]. Future Microbiol, 2010, 5(4): 585-602. [DOI]
[31]
van der Fits L, Bolder R, Heemskerk-van der Meer M, Drijver J, van Polanen Y, Serroyen J, Langedijk JPM, Schuitemaker H, Saeland E, Zahn R. Adenovector 26 encoded prefusion conformation stabilized RSV-F protein induces long-lasting Th1-biased immunity in neonatal mice[J]. NPJ Vaccines, 2020, 5: 49. [DOI]
[32]
Williams K, Bastian AR, Feldman RA, Omoruyi E, de Paepe E, Hendriks J, van Zeeburg H, Godeaux O, Langedijk JPM, Schuitemaker H, Sadoff J, Callendret B. Phase 1 safety and immunogenicity study of a respiratory syncytial virus vaccine with an adenovirus 26 vector encoding prefusion f (ad26.Rsv.Pref) in adults aged ≥60 years[J]. J Infect Dis, 2020, 222(6): 979-988. [DOI]
[33]
Sadoff J, De Paepe E, Haazen W, Omoruyi E, Bastian AR, Comeaux C, Heijnen E, Strout C, Schuitemaker H, Callendret B. Safety and immunogenicity of the Ad26.RSV.preF investigational vaccine coadministered with an influenza vaccine in older adults[J]. J Infect Dis, 2021, 223(4): 699-708. [DOI]
[34]
Cicconi P, Jones C, Sarkar E, Silva-Reyes L, Klenerman P, de Lara C, Hutchings C, Moris P, Janssens M, Fissette LA, Picciolato M, Leach A, Gonzalez-Lopez A, Dieussaert I, Snape MD. First-in-human randomized study to assess the safety and immunogenicity of an investigational respiratory syncytial virus (RSV) vaccine based on chimpanzee-adenovirus-155 viral vector-expressing RSV fusion, nucleocapsid, and antitermination viral proteins in healthy adults[J]. Clin Infect Dis, 2020, 70(10): 2073-2081. [DOI]
[35]
Jordan E, Lawrence SJ, Meyer TPH, Schmidt D, Schultz S, Mueller J, Stroukova D, Koenen B, Gruenert R, Silbernagl G, Vidojkovic S, Chen LM, Weidenthaler H, Samy N, Chaplin P. Broad antibody and cellular immune response from a phase 2 clinical trial with a novel multivalent poxvirus based RSV vaccine[J]. J Infect Dis, 2021, 223(6): 1062-1072. [DOI]
[36]
Yang CF, Wang CK, Malkin E, Schickli JH, Shambaugh C, Zuo F, Galinski MS, Dubovsky F; Study Group, Tang RS. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in phase 1 evaluation of Medi-534, a live attenuated parainfluenza type 3 vectored rsv vaccine[J]. Vaccine, 2013, 31(26): 2822-2827. [DOI]
[37]
Scaggs Huang F, Bernstein DI, Slobod KS, Portner A, Takimoto T, Russell CJ, Meagher M, Jones BG, Sealy RE, Coleclough C, Branum K, Dickey M, Buschle K, McNeal M, Makowski M, Nakamura A, Hurwitz JL. Safety and immunogenicity of an intranasal sendai virus-based vaccine for human parainfluenza virus type iand respiratory syncytial virus (SEVRSV) in adults[J]. Hum Vaccin Immunother, 2021, 17(2): 554-559. [DOI]
[38]
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections[J]. J Microbiol, 2017, 55(3): 220-230. [DOI]
[39]
Muňoz FM, Swamy GK, Hickman SP, Agrawal S, Piedra PA, Glenn GM, Patel N, August AM, Cho I, Fries L. Safety and immunogenicity of a respiratory syncytial virus fusion (F) protein nanoparticle vaccine in healthy third-trimester pregnant women and their infants[J]. J Infect Dis, 2019, 220(11): 1802-1815. [DOI]
[40]
Fries L, Shinde V, Stoddard JJ, Thomas DN, Kpamegan E, Lu H, Smith G, Hickman SP, Piedra P, Glenn GM. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults[J]. Immun Ageing, 2017, 14: 8. [DOI]
[41]
Madhi SA, Polack FP, Piedra PA, Prepare Study Group. Respiratory syncytial virus vaccination during pregnancy and effects in infants[J]. N Engl J Med, 2020, 383(5): 426-439. [DOI]
[42]
Ascough S, Vlachantoni I, Kalyan M, Haijema BJ, Wallin-Weber S, Dijkstra-Tiekstra M, Ahmed MS, van Roosmalen M, Grimaldi R, Zhang Q, Leenhouts K, Openshaw PJ, Chiu C. Local and systemic immunity against respiratory syncytial virus induced by a novel intranasal vaccine. A randomized, double-blind, placebo-controlled clinical trial[J]. Am J Respir Crit Care Med, 2019, 200(4): 481-492. [DOI]
[43]
Crank MC, Ruckwardt TJ, Chen M, Morabito KM, Phung E, Costner PJ, Holman LA, Hickman SP, Berkowitz NM, Gordon IJ, Yamshchikov GV, Gaudinski MR, Kumar A, Chang LA, Moin SM, Hill JP, DiPiazza AT, Schwartz RM, Kueltzo L, Cooper JW, Chen P, Stein JA, Carlton K, Gall JG, Nason MC, Kwong PD, Chen GL, Mascola JR, McLellan JS, Ledgerwood JE, Graham BS, VRC 317 Study Team. A proof of concept for structure-based vaccine design targeting RSV in humans[J]. Science, 2019, 365(6452): 505-509. [DOI]
[44]
Langley JM, MacDonald LD, Weir GM, MacKinnon-Cameron D, Ye L, McNeil S, Schepens B, Saelens X, Stanford MM, Halperin SA. A respiratory syncytial virus vaccine based on the small hydrophobic protein ectodomain presented with a novel lipid-based formulation is highly immunogenic and safe in adults: a first-in-humans study[J]. J Infect Dis, 2018, 218(3): 378-387. [DOI]
[45]
Hinrichs WLJ, Prinsen MG, Frijlink HW. Inulin glasses for the stabilization of therapeutic proteins[J]. Int J Pharm, 2001, 215: 163-174. [DOI]
[46]
Falloon J, Yu J, Esser MT, Villafana T, Yu L, Dubovsky F, Takas T, Levin MJ, Falsey AR. An adjuvanted, postfusion f protein-based vaccine did not prevent respiratory syncytial virus illness in older adults[J]. J Infect Dis, 2017, 216(11): 1362-1370. [DOI]
[47]
American Academy of Pediatrics Committee on Infectious Diseases, American Academy of Pediatrics Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection[J]. Pediatrics, 2014, 134(2): 415-420. [DOI]
[48]
Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T, Villafana T, Dubovsky F, Griffin MP. Safety, tolerability and pharmacokinetics of Medi8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants[J]. Pediatr Infect Dis J, 2018, 37(9): 886-892. [DOI]
[49]
Zhu Q, McLellan JS, Kallewaard NL, Ulbrandt ND, Palaszynski S, Zhang J, Moldt B, Khan A, Svabek C, McAuliffe JM, Wrapp D, Patel NK, Cook KE, Richter BWM, Ryan PC, Yuan AQ, Suzich JA. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants[J]. Sci Transl Med, 2017, 9(388): eaaj1928. [DOI]
[50]
Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T, Villafana T, Dubovsky F, Griffin MP. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion f-targeting monoclonal antibody administered as a single dose to healthy preterm infants[J]. Pediatr Infect Dis J, 2018, 37(9): 886-892. [DOI]
[51]
Griffin MP, Yuan Y, Takas T, Domachowske JB, Madhi SA, Manzoni P, Simões EAF, Esser MT, Khan AA, Dubovsky F, Villafana T, DeVincenzo JP, Nirsevimab Study Group. Single-dose Nirsevimab for prevention of RSV in preterm infants[J]. N Engl J Med, 2020, 383(5): 415-425. [DOI]
[52]
Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V, Millar A, Power UF, Stortelers C, Allosery K, Melero JA, Depla E. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection[J]. Antimicrob Agents Chemother, 2015, 60(1): 6-13. [DOI]
[53]
Cunningham S, Piedra PA, Martinon-Torres F, Szymanski H, Brackeva B, Dombrecht E, Detalle L, Fleurinck C, RESPIRE study group. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: a double-blind, randomised, placebo-controlled, phase 2b trial[J]. Lancet Respir Med, 2021, 9(1): 21-32. [DOI]
[54]
Groothuis JR, Simoes EA, Levin MJ, Hall CB, Long CE, Rodriguez WJ, Arrobio J, Meissner HC, Fulton DR, Welliver RC. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. The respiratory syncytial virus immune globulin study group[J]. N Engl J Med, 1993, 329(21): 1524-1530. [DOI]

文章信息

吴小英, 孟庆红, 姚开虎, 许红梅, 符州
WU Xiaoying, MENG Qinghong, YAO Kaihu, XU Hongmei, FU Zhou
呼吸道合胞病毒疫苗及其抗体制剂的研究进展
Research progress of respiratory syncytial virus vaccine and antibody preparations
微生物与感染, 2022, 17(1): 55-64.
Journal of Microbes and Infections, 2022, 17(1): 55-64.
通信作者
姚开虎
E-mail:yaokaihu@bch.com.cn

工作空间