文章快速检索     高级检索
  微生物与感染  2023, Vol. 18 Issue (5): 290-296      DOI: 10.3969/j.issn.1673-6184.2023.05.005
0
Contents            PDF            Abstract             Full text             Fig/Tab
基于肠道菌群产物浅谈脓毒症免疫紊乱
周飞 , 赵恒 , 樊雪雁 , 董晨明     
兰州大学第二医院重症医学科,甘肃 兰州 730030
摘要:脓毒症已成为入住重症监护室(intensive care unit,ICU) 患者死亡的主要原因之一,然而目前对于脓毒症尚无特效性治疗办法。针对脓毒症病理生理的研究发现,免疫紊乱在脓毒症的发病及病情发展中起着重要作用。肠道菌群作为人体内最大的共生体,研究显示其可以通过多种方式影响宿主的免疫状态,但确切机制尚无统一报道。基于肠道菌群在宿主免疫调节中的作用,本文从肠道菌群产物的角度综述了肠道菌群在脓毒症免疫调节中的机制,指出肠道菌群一方面能够调节宿主免疫系统的发育和功能;另一方面,脓毒症诱导的肠道菌群失调也将导致菌群产物的改变,从而丧失对免疫系统的正常调节作用,这可能是促进脓毒症进一步发展的重要原因,而基于肠道菌群的生物疗法,或许有望成为脓毒症常规治疗外的重要补充。
关键词肠道菌群    菌群产物    脓毒症    免疫调节    
Immune disorders of sepsis based on gut microbiota products
ZHOU Fei , ZHAO Heng , FAN Xueyan , DONG Chenming     
Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
Abstract: Sepsis has become one of the leading causes of death in ICU (intensive care unit) patients, but there is still no specific treatment for sepsis. In the study of the pathophysiology of sepsis, it is found that immune disorder plays an important role in the pathogenesis and development of sepsis. As the largest symbiont in human body, gut microbiota has been shown to affect the immune state of the host in various ways, but the exact mechanism has not been uniformly reported. Based on the role of gut microbiota in host immune regulation, this paper reviews the mechanism of gut microbiota in immune regulation of sepsis from the perspective of gut microbiota products, pointing out that gut microbiota on the one hand regulates the development and function of the host immune system; On the other hand, the imbalance of gut microbiota induced by sepsis will also lead to the change of microbiota products and the loss of the normal regulatory effect on the immune system, which may promote the further development of sepsis and form a vicious cycle. Biologic therapy based on gut microbiota may be an important addition to conventional treatment of sepsis.
Keywords: Gut microbiota    Microbiota products    Sepsis    Immune regulation    

脓毒症被定义为机体对感染的反应失调导致的多器官功能障碍[1]。研究显示,我国因脓毒症入院的人数呈持续增长趋势,并且在2015年约造成超过100万人的死亡[2-3],脓毒症的发病机制极其复杂,其中免疫紊乱在脓毒症的病理生理中起着重要作用[4]。有报道称,患者在脓毒症早期常表现出免疫亢进的促炎状态,以促进机体清除病原体,而一旦促炎反应持续发展,将导致组织器官的进一步损伤,从而加重病情;其次,经过早期的炎症反应,免疫细胞和炎症介质的过度消耗可能导致疾病后期的免疫应答低下,增加了继发感染和死亡率[5]。近年的观点认为,免疫亢进和抑制状态在脓毒症患者中可能同时存在,促炎反应和抑炎反应的平衡在维持机体正常免疫调节中至关重要[5]

对肠道菌群的研究发现,肠道菌群在机体的免疫调节中具有重要作用,肠道菌群的定植及稳定促进了免疫系统的发育,并且在疾病中调节宿主的免疫反应[6]。在脓毒症中,肠道菌群的破坏增加了脓毒症的易感性,而脓毒症一旦形成,肠道菌群在疾病或抗生素等药物的多重打击下发生严重紊乱,益生菌群的减少以及机会致病菌的大量增殖导致菌群产物异常改变,从而丧失其对免疫系统的正常调节功能[7],此外,在脓毒症发生后,肠道屏障功能受损以及异常菌群产物的大量易位也可诱发全身性的炎症反应及病理改变。目前,对于脓毒的治疗尚无特效办法,通过调节肠道菌群以恢复患者的免疫稳态或许是治疗脓毒症的有效方法[8]

1 肠道菌群

健康成人的肠道内生活着近千种肠道微生物群,它们在与宿主的长期进化过程中形成了以放线菌门、拟杆菌门、厚壁菌门、变形菌门等为主的优势菌群,并通过代谢肠道底物为自身提供能量,同时产生的代谢产物进入宿主体内发挥生物调节作用,稳定的肠道菌群可以抵抗病原体的入侵和机会致病菌的扩张,并且通过调节宿主的免疫反应影响宿主的健康。而一旦疾病或药物对肠道菌群的打击超过其自身的弹性复原能力导致菌群长期紊乱,将对宿主的健康造成巨大的威胁[9]

2 肠道菌群产物调节免疫机制 2.1 脂多糖

脂多糖(lipopolysaccharide,LPS) 是革兰氏阴性菌细胞壁的主要成分,也是病原体感染的主要致病分子,肠道菌群的失调和肠道屏障破坏导致大量LPS吸收入血,并通过模式识别受体(pattern recognition receptor,PRR) 激活先天性和适应性免疫系统[10]。研究显示,LPS通过激活Toll样受体4 (toll-like receptor 4,TLR4) 和核[转录]因子- κ B (nuclear factor- κ B,NF- κ B) 是其触发炎症反应和器官损伤的主要机制[11]。并且LPS结合不同的PRR受体在脓毒症后期通过促进高迁移率族蛋白1 (high-mobility group box 1, HMGB1) 的释放发挥对免疫系统的不同调节效果[12]。对此,有学者提出通过多粘菌素B血液吸附(polymyxin-B hemadsorption, PMX-HA) 清除脓毒症患者体内的LPS,并证明通过降低体内LPS浓度从而缩短了器官功能障碍恢复的时间,并改善了患者的SOFA评分[13]

此外,也有研究显示长期暴露于低剂量的LPS可诱导宿主的免疫耐受,其主要特征是下调肿瘤坏死因子α (tumor necrosis factor- α,TNF- α)、CXC基序趋化因子配体10 (C-X-C motif chemokine ligand 10, CXCL10)等促炎介质,并上调白细胞介素-10(interleukin,IL-10)、转化生长因子β (transforming growth factor- β,TGF- β) 等抗炎细胞因子,从而减轻炎症反应对细胞或组织的损伤[14]。在免疫耐受状态下,单核细胞表现出抗原呈递和趋化能力降低但吞噬能力增强的改变,并且在转录水平上降低了促炎细胞因子和趋化因子相关促炎基因的表达,但保留了机体抵抗病原感染的能力[15]。LPS诱导的免疫耐受降低了宿主对过度炎症刺激的反应,并被认为是机体对过度炎症刺激的自我调节机制[14]

2.2 细菌细胞外囊泡

肠道菌群以出芽或裂解的方式产生细菌细胞外囊泡(bacterial extracellular vesicles, BEVs),它们携带细菌活性物质(如脂多糖,肽聚糖,脂质,蛋白质,核酸以及病原体毒力因子等) 并通过细胞内外PRR介导的信号通路参与宿主的免疫调节过程[16]。在脓毒症动物模型中,研究人员通过向小鼠腹腔注射粪便分离来源的BEV诱导出脓毒症样全身炎症反应,证明BEV在脓毒症的免疫反应中起着重要作用[17]。总的来说,BEV通过向上皮或免疫细胞传递病原体相关分子模式(pathogen-associated molecular patterns, PAMPs),并激活其PRR发挥对宿主先天或适应性免疫的调节作用[18],也能通过改变宿主免疫细胞的表观遗传影响宿主免疫系统对后续感染的反应,实现长期调控[19]

在先天免疫中,来源于大肠杆菌的BEV可通过TLR4受体介导的NF- κ B信号通路促进脓毒症模型小鼠肺泡内皮细胞释放IL-8和CXCL1诱导中性粒细胞向肺部迁移[20];还可通过细胞内外多种信号通路促进肺部巨噬细胞分泌促炎细胞因子来促进炎症反应的发生[21];此外,BEV也能通过诱导宿主免疫细胞释放细胞外囊泡,以增强自身的炎症反应[22]。但也有研究显示,不同菌种来源的BEV可能具有相反的免疫调节效应,例如大肠杆菌益生菌株Nissle 1917(EcN)的BEV可促进RAW264.7巨噬细胞分泌IL-10,并在体外诱导以抗炎为主的免疫反应[23],来自副干酪乳杆菌的BEV通过降低LPS诱导的促炎细胞因子IL-1 α、IL-1 β、IL-2和TNF- α的表达,增加抗炎细胞因子IL-10和TGF- β的释放以减轻局部炎症反应[24],但当使用抗生素诱导肠道菌群失衡后,梭杆菌分泌的BEV促进了炎性细胞因子的释放和肠道炎症疾病的发生,这在健康的个体中受到了抑制[25],并且最近的研究还显示在健康人体的血液循环和无菌体腔中也发现肠道来源的BEV,并与单核细胞的活动密切相关[26],这提示健康肠道菌群来源的BEV在调控免疫稳态中的重要作用。但由于不同菌群来源的BEV所携带的生物活性物质各异,BEV在宿主免疫调节中的确切机制仍有待进一步阐明,而基于BEV的生物载体作用,BEV在疫苗接种、靶向传递等方面的应用前景广阔[27]

2.3 短链脂肪酸

短链脂肪酸(short-chain fatty acid,SCFA) 主要通过肠道微生物群代谢膳食纤维(dietary fiber,DF) 产生,包括乙酸(C2)、丙酸(C3)、丁酸(C4) 和少量戊酸(C5),在免疫系统中,SCFA主要通过激活G蛋白偶联受体(G-protein coupled receptor,GPCR) 或抑制组蛋白去乙酰化酶(histone deacetylase, HDAC) 发挥对先天和适应性免疫反应的调节作用[28]

其中丁酸盐作为免疫调节中的主要短链脂肪酸,可以通过向肠上皮细胞提供主要的能量来源促进肠上皮细胞间的紧密连接和黏液以及抗菌肽的分泌增强肠道屏障功能[29],也能通过抑制中性粒细胞分泌促炎细胞因子和中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs) 减少肠道炎症反应[30]。在先天免疫系统中,丁酸减少NK细胞表面受体(TRAIL, NKp30, NKp44) 的激活,抑制炎症细胞因子(如IFN γ、TNF- α、IL-22、颗粒酶B、颗粒酶A、穿孔素) 的产生从而发挥抗炎作用,也能通过GPCR43激活ERK诱导NLRP3炎症小体释放细胞因子来减轻自身的免疫反应[31]。Huang等[32]的试验证明了丁酸盐和丙酸盐可通过激活GPCR43或抑制HDAC抑制巨噬细胞M2型极化,减轻过敏性炎症反应。在适应性免疫中,丁酸盐强烈抑制了CD8+ T细胞(CTL) 中的组蛋白脱乙酰酶(histone deacetylase,HDAC) 及其效应分子的基因表达,促进IFN- γ和颗粒酶B的产生[33],并通过细胞代谢途径增强CD8+T转化为记忆细胞和长期存活的能力,以及促进其在病原再次感染时的快速激活[34]。还能通过抑制HDAC活性并激活丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK) 信号通路,促进B10 (分泌IL-10) 细胞的生成[35],但是针对丙酸盐的研究发现,丙酸盐虽然抑制了肺部缺血再灌注等无菌性炎症反应,但当用抗生素诱导肠道菌群紊乱后,丙酸盐的升高可能导致肺部的细菌感染加重[36],其机制有待进一步明确。

总的来说,短链脂肪酸作为肠道微生物群的主要代谢产物,在免疫系统中发挥着以抗炎为主的调节作用,肠道菌群结构的破坏导致肠道来源的SCFA水平严重降低[37],这可能是脓毒症患者免疫稳态被破坏和全身炎症反应发生的原因之一。

2.4 色氨酸

色氨酸(tryptophan, Trp)是人体必需的氨基酸之一,摄入的色氨酸主要通过内源性代谢途径(犬尿氨酸和血清素途径)产生犬尿酸、3-羟基犬尿氨酸和5-羟基色氨酸,或通过外源性途径(肠道菌群)代谢为吲哚及吲哚衍生物[38]。大量研究表明,肠道微生物群代谢Trp产生的信号分子通过芳烃受体(aryl hydrocarbon receptor, AhR) 途径在微生物群落与宿主的沟通中起着关键作用[39]

在免疫系统中,Trp的肠道微生物群代谢产物通过AhR途径促进巨噬细胞、Treg细胞、Breg细胞和先天淋巴样细胞(innate lymphoid cells 3, ILC3) 等免疫细胞的分化和功能[40]。AhR的激活通过诱导下游基因的表达介导氧自由基和细胞因子的产生来参与宿主的氧化应激和炎症反应的调节[41],并可通过促进耐受型树突状细胞的分化和调节Th17/Treg细胞的比例以抑制炎症反应[42]。在适应性免疫中,吲哚衍生物通过调节细胞因子和转录因子的表达来调节T细胞分化,并通过调节B细胞凋亡和分泌免疫球蛋白以响应病原刺激[43]。Riazati等[44]对健康人群的研究发现,循环吲哚和犬尿氨酸的浓度与自然杀伤T细胞(natural killer T cell,NKT)、TNF- α、CRP和IL-10的浓度呈正相关,进一步验证了Trp在宿主免疫调节中的作用。总的来说,这些代谢物参与调节先天性和适应性免疫,刺激抗炎细胞因子的产生并刺激免疫细胞的活性预防炎症和免疫相关疾病的发展,但肠道Trp代谢物与免疫系统之间的联系仍处于探索阶段,需要更多的研究阐明其具体机制[43]

2.5 胆汁酸

胆汁酸(bile acid,BA)主要由胆固醇在肝脏中合成,分为初级BA和次级BA, 初级BA进入肠道后,95%被重吸收回肝脏,其余5%在肠道菌群作用下经氧化、脱羟基和羟基异构等一系列反应后形成次级BA[45]。BA作为代谢整合因子和信号传导因子,可以激活多种信号通路,目前报道最多的是法尼醇受体(farnesoid-X-receptor, FXR) 和G蛋白偶联胆汁酸受体1 (G-protein-coupled bile acid receptor 1, GPBAR1),这些受体高表达于单核细胞、巨噬细胞、树突状细胞(dendritic cell,DC)和自然杀伤细胞(natural killer cell,NK)等免疫细胞,并可识别体内较低浓度的BA,发挥对免疫系统的调节作用[46]。在生理状态下,BA通过激活GPBAR1和FXR受体,在先天免疫系统中抑制单核/巨噬细胞、DC细胞和NK细胞的促炎活性,主要发挥以抗炎为主的调节作用[47]。在脓毒症小鼠模型中,FXR的缺乏导致NLRP3释放增加,并促进脓毒症的发生[48]。而在严重肝功能障碍的脓毒症患者中,循环BA的上升可能加重脓毒症患者的免疫抑制,从而增加了病死率[49]。在适应性免疫中,由于FXR和GPBAR1受体在T细胞、B细胞中表达较少,现有的证据表明,BA主要通过维生素D受体(vitamin D receptor,VDR) 分别促进辅助性T细胞(helper T cell,TH17) 和调节性T细胞(regulatory T cell,Treg) 的分化发育[50],从而发挥对适应性免疫系统的调节作用。次级胆汁酸也能通过FXR作用于DC增加Foxp3的表达,促进外周Treg细胞的生成[51]。此外,虽然有报道称,补充BA提高了大鼠结肠IgA的浓度,但尚未有研究明确指出BA在B细胞中的调节作用[52]

3 治疗

常用的微生物疗法包括使用益生菌和粪便菌群移植(fecal microbiota transplant, FMT)。研究显示,益生菌可通过调节关键的信号通路(如NF- κ B和MAPK) 增强肠上皮细胞功能防止生理应激,并通过调节细胞因子分泌等方式影响T淋巴细胞亚群和B细胞的分泌功能[53]。但也有研究显示,益生菌疗法虽然降低了脓毒症中的炎症介质,但在新生儿和无胸腺成年小鼠中使用益生菌却未能改善脓毒症诱导的炎症反应和死亡率,并且少数临床试验发现益生菌的使用可能通过促进炎症级联反应而加重脓毒症的发展[54],这可能与菌群易位感染有关,而合生元(益生菌与益生元的组合)通过补充益生菌和菌群底物,促进有益代谢产物如短链脂肪酸的产生,似乎是治疗脓毒症更为有效的方法,但由于益生菌的双重作用,在使用中仍须谨慎[55]。此外,FMT通过引入健康的菌群并恢复肠道正常的菌群结构,促进肠道屏障和肠道免疫调节功能的恢复,在脓毒症的免疫治疗中具有显著的效果[56]。但是,与益生菌一样,FMT也面临着菌群易位感染的风险,因此在使用微生物疗法时,应严格评估其适应证。

4 小结

综上所述,肠道菌群在脓毒症的发生发展中起着重要作用,在生理情况下,肠道菌群通过其菌群成分或代谢产物协助促进宿主免疫系统的发育和成熟,并协调体内促炎与抗炎反应维持体内免疫稳定。而在脓毒症发生时,多种原因造成肠道菌群失调、肠道屏障破坏和菌群产物的改变,并导致其正常生理调节功能丧失,促进炎症反应与疾病的发生,通过调节肠道菌群恢复其对免疫系统的正常生理调节功能,将有望成为未来脓毒症常规治疗之外的重要补充。

参考文献
[1]
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard G R, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, Van Der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. Jama, 2016, 315(8): 801-810. [DOI]
[2]
Weng L, Zeng XY, Yin P, Wang LJ, Wang CY, Jiang W, Zhou MG, Du B. Sepsis-related mortality in China: a descriptive analysis[J]. Intensive Care Med, 2018, 44(7): 1071-1080. [DOI]
[3]
Weng L, Xu Y, Yin P, Wang Y, Chen Y, Liu W, Li S, Peng J M, Dong R, Hu XY, Jiang W, Wang CY, Gao P, Zhou MG, Du B. National incidence and mortality of hospitalized sepsis in china[J]. Crit Care, 2023, 27(1): 84. [DOI]
[4]
Marques A, Torre C, Pinto R, Sepodes B, Rocha J. Treatment advances in sepsis and septic shock: Modulating pro-and anti-inflammatory mechanisms[J]. J Clin Med, 2023, 12(8): 2892. [DOI]
[5]
Fu X, Liu Z, Wang Y. Advances in the study of immunosuppressive mechanisms in sepsis[J]. J Inflamm Res, 2023, 16: 3967-3981. [DOI]
[6]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease[J]. Cell Res, 2020, 30(6): 492-506. [DOI]
[7]
Adelman MW, Woodworth MH, Langelier C, Busch LM, Kempker JA, Kraft CS, Martin GS. The gut microbiome's role in the development, maintenance, and outcomes of sepsis[J]. Crit Care, 2020, 24(1): 278. [DOI]
[8]
Niu M, Chen P. Crosstalk between gut microbiota and sepsis[J]. Burns Trauma, 2021, 9: tkab036. [DOI]
[9]
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health[J]. Gut, 2021, 70(3): 595-605. [DOI]
[10]
Sondhi P, Maruf MHU, Stine KJ. Nanomaterials for biosensing lipopolysaccharide[J]. Biosensors (Basel), 2019, 10(1): 2. [DOI]
[11]
Sygitowicz G, Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: an overview[J]. Braz J Infect Dis, 2020, 24(6): 552-560. [DOI]
[12]
Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous regulation and pharmacological modulation of sepsis-induced hmgb1 release and action: an updated review[J]. Cells, 2021, 10(9): 2220. [DOI]
[13]
Cutuli SL, De Rosa S, Ferrer R, Ruiz-Rodriguez JC, Forfori F, Ronco C, Antonelli M. Endotoxin activity trend and multi-organ dysfunction in critically ill patients with septic shock, who received polymyxin-b hemadsorption: a multicenter, prospective, observational study[J]. Artif Organs, 2023, 47(8): 1361-1370. [DOI]
[14]
Liu D, Cao S, Zhou Y, Xiong Y. Recent advances in endotoxin tolerance[J]. J Cell Biochem, 2019, 120(1): 56-70. [DOI]
[15]
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137. [DOI]
[16]
Díaz-Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut[J]. J Extracell Vesicles, 2021, 10(13): e12161. [DOI]
[17]
Park KS, Lee J, Lee C, Park HT, Kim JW, Kim OY, Kim SR, Rådinger M, Jung HY, Park J, Lötvall J, Gho YS. Sepsis-like systemic inflammation induced by nano-sized extracellular vesicles from feces[J]. Front Microbiol, 2018, 9: 1735. [DOI]
[18]
Tiku V, Tan MW. Host immunity and cellular responses to bacterial outer membrane vesicles[J]. Trends Immunol, 2021, 42(11): 1024-1036. [DOI]
[19]
Charpentier LA, Dolben EF, Hendricks MR, Hogan DA, Bomberger JM, Stanton BA. Bacterial outer membrane vesicles and immune modulation of the host[J]. Membranes (Basel), 2023, 13(9): 752. [DOI]
[20]
Lee J, Yoon YJ, Kim JH, Dinh NTH, Go G, Tae S, Park KS, Park HT, Lee C, Roh TY, Di Vizio D, Gho YS. Outer membrane vesicles derived from escherichia coli regulate neutrophil migration by induction of endothelial il-8[J]. Front Microbiol, 2018, 9: 2268. [DOI]
[21]
Ryu S, Ni K, Wang C, Sivanantham A, Carnino JM, Ji HL, Jin Y. Bacterial outer membrane vesicles promote lung inflammatory responses and macrophage activation via multi-signaling pathways[J]. Biomedicines, 2023, 11(2): 568. [DOI]
[22]
Imamiya R, Shinohara A, Yakura D, Yamaguchi T, Ueda K, Oguro A, Minamiyama Y, Ichikawa H, Horiguchi Y, Osada-Oka M. Escherichia coli-derived outer membrane vesicles relay inflammatory responses to macrophage-derived exosomes[J]. mBio, 2023, 14(1): e0305122. [DOI]
[23]
Hu R, Lin H, Li J, Zhao Y, Wang M, Sun X, Min Y, Gao Y, Yang M. Probiotic escherichia coli nissle 1917-derived outer membrane vesicles enhance immunomodulation and antimicrobial activity in raw264.7 macrophages[J]. BMC Microbiol, 2020, 20(1): 268. [DOI]
[24]
Choi JH, Moon CM, Shin TS, Kim EK, Mcdowell A, Jo MK, Joo YH, Kim SE, Jung HK, Shim KN, Jung SA, Kim YK. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway[J]. Exp Mol Med, 2020, 52(3): 423-437. [DOI]
[25]
Engevik MA, Danhof HA, Ruan W, Engevik AC, Chang-Graham AL, Engevik KA, Shi Z, Zhao Y, Brand CK, Krystofiak ES, Venable S, Liu X, Hirschi KD, Hyser JM, Spinler JK, Britton RA, Versalovic J. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation[J]. mBio, 2021, 12(2): e02706-20. [DOI]
[26]
Schaack B, Hindré T, Quansah N, Hannani D, Mercier C, Laurin D. Microbiota-derived extracellular vesicles detected in human blood from healthy donors[J]. Int J Mol Sci, 2022, 23(22): 13787. [DOI]
[27]
Thapa HB, Ebenberger SP, Schild S. The two faces of bacterial membrane vesicles: Pathophysiological roles and therapeutic opportunities[J]. Antibiotics (Basel), 2023, 12(6): 1045. [DOI]
[28]
Liu XF, Shao JH, Liao YT, Wang LN, Jia Y, Dong PJ, Liu ZZ, He DD, Li C, Zhang X. Regulation of short-chain fatty acids in the immune system[J]. Front Immunol, 2023, 14: 1186892. [DOI]
[29]
Parada Venegas D, De La Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (scfas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. [DOI]
[30]
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J]. Gut Microbes, 2021, 13(1): 1968257. [DOI]
[31]
Fujiwara H, Docampo MD, Riwes M, Peltier D, Toubai T, Henig I, Wu S J, Kim S, Taylor A, Brabbs S, Liu C, Zajac C, Oravecz-Wilson K, Sun Y, Núñez G, Levine JE, Van Den Brink MRM, Ferrara JLM, Reddy P. Microbial metabolite sensor gpr43 controls severity of experimental gvhd[J]. Nat Commun, 2018, 9(1): 3674. [DOI]
[32]
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on m2 macrophages polarization in vitro and in vivo[J]. Clin Exp Immunol, 2022, 207(1): 53-64. [DOI]
[33]
Luu M, Weigand K, Wedi F, Breidenbend C, Leister H, Pautz S, Adhikary T, Visekruna A. Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate[J]. Sci Rep, 2018, 8(1): 14430. [DOI]
[34]
Bachem A, Makhlouf C, Binger KJ, De Souza DP, Tull D, Hochheiser K, Whitney PG, Fernandez-Ruiz D, Dähling S, Kastenmüller W, Jönsson J, Gressier E, Lew A M, Perdomo C, Kupz A, Figgett W, Mackay F, Oleshansky M, Russ BE, Parish IA, Kallies A, Mcconville MJ, Turner SJ, Gebhardt T, Bedoui S. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8(+) T cells[J]. Immunity, 2019, 51(2): 285-297. [DOI]
[35]
Zou F, Qiu Y, Huang Y, Zou H, Cheng X, Niu Q, Luo A, Sun J. Effects of short-chain fatty acids in inhibiting hdac and activating p38 mapk are critical for promoting b10 cell generation and function[J]. Cell Death Dis, 2021, 12(6): 582. [DOI]
[36]
Tian X, Hellman J, Horswill AR, Crosby HA, Francis KP, Prakash A. Elevated gut microbiome-derived propionate levels are associated with reduced sterile lung inflammation and bacterial immunity in mice[J]. Front Microbiol, 2019, 10: 159. [DOI]
[37]
Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, Giraldo-Villa A, Acevedo-Castaño I, Yepes-Molina MA, Barbosa-Barbosa J, Barrera-Causil CJ, Agudelo-Ochoa GM. Stool short-chain fatty acids in critically ill patients with sepsis[J]. J Am Coll Nutr, 2020, 39(8): 706-712. [DOI]
[38]
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23(6): 716-724. [DOI]
[39]
Vyhlídalová B, Krasulová K, Pečinková P, Marcalíková A, Vrzal R, Zemánková L, Vančo = J, Trávníček Z, Vondráček J, Karasová M, Mani S, Dvořák Z. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: a detailed characterization[J]. Int J Mol Sci, 2020, 21(7): 2614. [DOI]
[40]
Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis[J]. Cells, 2022, 11(15): 2296. [DOI]
[41]
Tan YQ, Wang YN, Feng HY, Guo ZY, Li X, Nie XL, Zhao YY. Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling[J]. Free Radic Biol Med, 2022, 184: 30-41. [DOI]
[42]
Cui X, Ye Z, Wang D, Yang Y, Jiao C, Ma J, Tang N, Zhang H. Aryl hydrocarbon receptor activation ameliorates experimental colitis by modulating the tolerogenic dendritic and regulatory t cell formation[J]. Cell Biosci, 2022, 12(1): 46. [DOI]
[43]
Li S. Modulation of immunity by tryptophan microbial metabolites[J]. Front Nutr, 2023, 10: 1209613. [DOI]
[44]
Riazati N, Kable ME, Newman JW, Adkins Y, Freytag T, Jiang X, Stephensen CB. Associations of microbial and indoleamine-2, 3-dioxygenase-derived tryptophan metabolites with immune activation in healthy adults[J]. Front Immunol, 2022, 13: 917966. [DOI]
[45]
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids[J]. Microbiome, 2021, 9(1): 140. [DOI]
[46]
Biagioli M, Marchianò S, Carino A, Di Giorgio C, Santucci L, Distrutti E, Fiorucci S. Bile acids activated receptors in inflammatory bowel disease[J]. Cells, 2021, 10(6): 1281. [DOI]
[47]
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity[J]. Front Immunol, 2018, 9: 1853. [DOI]
[48]
Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, Wang G, Gonzalez F J. Farnesoid x receptor regulation of the nlrp3 inflammasome underlies cholestasis-associated sepsis[J]. Cell Metab, 2017, 25(4): 856-867. [DOI]
[49]
Leonhardt J, Dorresteijn MJ, Neugebauer S, Mihaylov D, Kunze J, Rubio I, Hohberger FS, Leonhardt S, Kiehntopf M, Stahl K, Bode C, David S, Wagener F, Pickkers P, Bauer M. Immunosuppressive effects of circulating bile acids in human endotoxemia and septic shock: patients with liver failure are at risk[J]. Crit Care, 2023, 27(1): 372. [DOI]
[50]
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR. Bile acid metabolites control t(h)17 and t(reg) cell differentiation[J]. Nature, 2019, 576(7785): 143-148. [DOI]
[51]
Campbell C, Mckenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, Ramos RJ, Cross JR, Kadaveru K, Hambor J, Rudensky AY. Bacterial metabolism of bile acids promotes generation of peripheral regulatory t cells[J]. Nature, 2020, 581(7809): 475-479. [DOI]
[52]
Yoshitsugu R, Liu H, Kamo Y, Takeuchi A, Joe GH, Tada K, Kikuchi K, Fujii N, Kitta S, Hori S, Takatsuki M, Iwaya H, Tanaka Y, Shimizu H, Ishizuka S. 12 α -hydroxylated bile acid enhances accumulation of adiponectin and immunoglobulin a in the rat ileum[J]. Sci Rep, 2021, 11(1): 12939. [DOI]
[53]
Thomas CM, Versalovic J. Probiotics-host communication: Modulation of signaling pathways in the intestine[J]. Gut Microbes, 2010, 1(3): 148-163. [DOI]
[54]
Kumar R, Tripathi AS, Sharma N, Singh G, Mohapatra L. Is regular probiotic practice safe for management of sepsis?[J]. Chin J Integr Med, 2022, 28(2): 185-192. [DOI]
[55]
Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics[J]. Appl Microbiol Biotechnol, 2022, 106(2): 505-521.
[56]
Keskey R, Cone JT, Defazio JR, Alverdy JC. The use of fecal microbiota transplant in sepsis[J]. Transl Res, 2020, 226: 12-25. [DOI]

文章信息

周飞, 赵恒, 樊雪雁, 董晨明
ZHOU Fei, ZHAO Heng, FAN Xueyan, DONG Chenming
基于肠道菌群产物浅谈脓毒症免疫紊乱
Immune disorders of sepsis based on gut microbiota products
微生物与感染, 2023, 18(5): 290-296.
Journal of Microbes and Infections, 2023, 18(5): 290-296.
通信作者
董晨明
E-mail:ery_dongchm@lzu.edu.cn
基金项目
中国研究型医院学会科研项目(Y2023FH-WZYX04-05)

工作空间