RNA荧光原位杂交(RNA-fluorescence in situ hybridization, RNA-FISH)技术将荧光标记的互补核苷酸探针杂交到相应靶序列,从而定位和检测细胞或整个组织切片中的特定RNA序列。RNA-FISH技术功能强大,可以在单细胞、组织切片到整个生物体中多尺度检测目的RNA的存在以及分布。近年来,其被广泛应用于RNA转录组分析[1-2]、病毒RNA生活周期的研究[3-4], 以及疾病诊断[5]等领域。在RNA-FISH技术实际应用中,由于荧光直接标记在探针上,阳性信号较弱。为了增强信号,提高信噪比,常在探针附近进行信号放大。如催化沉积报告荧光原位杂交(catalyzed reporter deposition fluorescent in situ hybridization, CARD-FISH)技术,通过使用荧光染料标记的酪酰胺,在原位杂交位点上的过氧化物酶附近生成和沉积许多荧光染料,完成信号放大[6-8]。CARD具有简便、高效、快速的特点,目前仍广泛应用于RNA-FISH。但是由于CARD在报告分子沉积之前的扩散往往会造成较高的背景值[9-10],此外内源性过氧化物酶活性也会影响荧光信号与靶RNA数量之间的关系[11],因此,结合CARD的RNA-FISH技术只能对靶RNA定性而不能定量。
随着技术的不断发展,杂交链扩增(hybridization chain reaction,HCR)技术也被应用于RNA-FISH中放大信号。HCR放大器由荧光标记的2种核酸发夹分子HCR hairpin1 (H1)和HCR hairpin2 (H2)组成,它们在同源引发链(initiator,I1)缺失的情况下以亚稳态的形式共存(见图 1A)。当探针特异性结合靶序列,暴露引发链与H1输入域特异性结合,暴露出与H2输入域互补的序列,H1与H2互补结合后,H2输出域暴露,继而与H1输入域结合,H1和H2发夹依次打开,组装成长缺口双链扩增聚合物,从而引发链式反应(见图 1A),实现信号的放大。但是利用早期HCR技术进行信号放大时,如果探针在样本内非特异性结合,引发链可能触发HCR,增强了背景信号[12]。
本文在RNA-FISH中应用的第3代HCR(HCR v3.0)技术,与早期的HCR相比,降低了探针的非特异性结合,极大提高了信噪比。HCR v3.0将每个携带完整HCR引发链的标准探针,设计成一对分裂式引发探针。只有当分裂探针都特异性地杂交到目标RNA上相邻的结合位点,才能形成完整的触发链而启动HCR信号放大,任何在样本中非特异性结合的单个探针都不会触发HCR,从而抑制背景信号的产生和放大(见图 1B)。Choi等[12]发现,HCR v3.0抑制背景的效果为早期HCR技术的50倍,并且通过HCR放大的荧光信号强度与目标分子的数量成近似线性关系[13]。基于此,HCR v3.0不但可以特异性放大荧光信号,提高信噪比,还可对高度自发光的样本RNA进行多通路、高分辨率的定量成像[13-14]。
尽管RNA-FISH技术已经被广泛用于定位细胞乃至生物体中的RNA分析[15-17]。但基于HCR v3.0的RNA-FISH技术仅在个别病毒研究中获得初步应用,如用于检测严重急性呼吸系统综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)[18-19]。本文将基于HCR v3.0的RNA-FISH技术应用于肠道病毒A71(enterovirus A71, EV-A71)的研究中,并在单个细胞水平上检测EV-A71 RNA与病毒3D蛋白的相互作用。
EV-A71是手足口病(hand foot mouth disease, HFMD) 的主要病原体,主要感染5岁以下的婴幼儿,所引起的手足口病多数症状轻微,为自限性疾病,少数出现神经源性综合征,如无菌性脑膜炎、脑干脑炎等,甚至导致死亡[20-21]。尽管中国食品药品监督管理局于2015年底批准肠道病毒A71型灭活疫苗(人二倍体细胞)上市,但由于EV-A71变异速度快且方向不明,目前仍缺乏针对EV-A71多亚型的特异性防治措施[22]。EV-A71基因组有一个大的开放阅读框,编码1个多聚蛋白质,该多聚蛋白被裂解为P1、P2和P3。P1被加工成4种结构蛋白(VP1~VP4),P2和P3被裂解为7种非结构蛋白(2A、2B、2C、3A、3B、3C和3D)[23-24]。其中3D蛋白为RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase, RdRp),主要参与病毒复制过程RNA链的合成,是特异性抗病毒治疗的关键靶点[25]。
本文成功建立了基于HCR v3.0的EV-A71 RNA-FISH检测技术,同时与蛋白免疫荧光(immunofluorescence,IF)联用,在单个细胞水平上检测了EV-A71 RNA与3D蛋白的分布,并定量了EV-A71 RNA以及3D蛋白质的相对变化,发现在病毒感染细胞后期,当RNA水平明显下降时,3D聚合酶反而增加。这与使用经典的逆转录定量聚合酶链反应(reverse transcriptase quantitative polymerase chain reaction,RT-qPCR)和免疫印迹(western blot)检测的结果在变化趋势上有明显不同,说明特异、可定量的单细胞RNA-FISH与IF联用,能更直观准确地反应病毒感染细胞的真实变化情况。
1 材料和方法 1.1 材料EV-A71病毒株(GenBank登录号:HQ891927, 064-Shanghai)由本实验室分离保存,人横纹肌瘤细胞(RD细胞)购自中国科学院细胞库,EV-A71-3D鼠单克隆抗体(GTX630193)购自GeneTex上海代理公司,β -actin抗体购自Cell Signal Technology上海代理公司,反转录试剂盒Hieff qPCR SYBR Green Master Mix(No Rox)购自上海翊圣生物科技有限公司。引物、RNA-FISH探针由北京擎科公司合成;荧光发夹oligo DNA分子的标记和质控由Thermo上海公司完成。
1.2 方法 1.2.1 细胞培养和EV-A71感染RD细胞培养于含10% (百分比浓度为体积分数,下同) 胎牛血清(fetal bovine serum,FBS)的DMEM培养基。当细胞生长良好时接种于共聚焦专用培养皿中,每孔接种2 mL浓度为1×105 cells/mL的细胞悬浮液。当细胞生长融合至80%~90%单层时,用感染复数(multiplicity of infection,MOI)为10的EV-A71感染,并于5% CO2, 37 ℃培养箱中培养。
1.2.2 RNA-FISH特异性探针的设计基于上述HCR v3.0技术原理,为检测EV-A71病毒RNA,针对EV-A71 RNA的15个作用靶点,本研究共设计了15对分裂式的互补探针(见表 1)。以第1组分裂式探针设计为例,探针1(probe 1)通过spacer AA与起始分子5-端部分I1相连,探针2(probe 2)通过spacer TA与起始分子3-端部分I2相连(见表 2)。本研究选择每对分裂式探针组相隔200 bp左右,以达到探针组覆盖EV-A71全基因组的目的(见图 1B),从而提高检测的敏感性。
Sets of probes | Split probe 1 sequence | Split probe 2 sequence | Target location | Targeted sequences |
1 | cactgtatccacatgcctcagcgga | tgccaatagttaattgcgccactcg | 956 | tccgctgaggcatgtggatacagtgatcgagtggcgcaattaactattggca |
2 | ggtggaatttactggcattgcactg | gtaggacagcgactaggagtgctcc | 1 280 | gcagtggataaaccaacgcgcccggatgtttcagtgaacaggttttatacat |
3 | gaataggtgctgaaacgccatcatcg | acacggggtggggtggaagtttgg | 1 759 | cagtgcaatgccagtaaattccaccaaggagcactcctagtcgctgtcctac |
4 | gtgctctataatgggtgttgctgat | agtagtcaaacactccatctcgggc | 2 225 | ctacgaccaaggagcgacgccagtaatccctataactatcacattggcccca |
5 | caaagcgcatgtaggtgaatagctc | tgcacgcaacaaaagtgaactctgc | 2 807 | cgatgatggcgtttcagcacctattctaccaaacttccaccccaccccgtgt |
6 | gtaaatcctaaccactaaagggtac | ccacgccctgacgtgcttcattctc | 3 169 | tggaagtcaccttcatgtttactggatccttcatggctaccggcaagatgct |
7 | ccaccgcaatcaccaggttctgagt | acgacgccatgttggcatctaagga | 3 639 | atcagcaacacccattatagagcacatgcccgagatggagtgtttgactact |
8 | tcccaaacatgacttcaaggtcctc | gacagaagtgagctaggtacgacac | 4 286 | ccacaggccagaacacgcaggtgagtagtcatcgactggatacaggcaaggt |
9 | gcgtcagaatcagacactgttggta | cagtccatgtagaacctgcggcgaa | 4 761 | gagctattcacctacatgcgctttgatgcagagttcacttttgttgcgtgca |
10 | gggctgcagcgtttgaaatttgcag | agttggatagctttcccacacacta | 4 899 | tccagcgcaggtttcagtgccattcatgtcacctgcgagtgcttatcaatgg |
11 | acaccaacgagacaaccgccactac | accctgcaaagagcttgtagatgac | 5 264 | gtaccctttagtggttaggatttacatgagaatgaagcacgtcagggcgtgg |
12 | caaggacgttcacgagtttgtgctc | cttgctcatccaccagttcaactgc | 5 534 | gcacagcgatcaccactcttgggaaatttgggcaacagtctggggctattta |
13 | gtcaccactcctccacactgtcctg | tgaataccgacaaccttcccaacag | 5 817 | actcagaacctggtgattgcggtggtatccttagatgccaacatggcgtcgt |
14 | ctggcctcgatcagacgggacttcc | ctgaggtacactgaatcatttagac | 6 447 | gcactggtgattgtgatcagaagtgattacgacatggttaccctcactgcga |
15 | aagcgaccatgttgagttcatccaa | gatagctagcgagcacatcgtctcc | 6 890 | gaggaccttgaagtcatgtttgggaatgtgtcgtacctagctcacttctgtc |
Oligo | Sequence (5′-3′) |
Probe 1 | gaggagggcagcaaacggaacactgtatccacatgcctcagcgga |
Probe 2 | tgccaatagttaattgcgccactcgtagaagagtcttcctttacg |
Initiator | gaggagggcagcaaacgggaagagtcttcctttacg |
Target sequences | tccgctgaggcatgtggatacagtgatcgagtggcgcaattaactattggca |
Hairpin 1 | cgtaaaggaagactcttcccgtttgctgccctcctcgcattctttcttgaggagggcagcaaacgggaagag-Alexa Fluor 488 |
Hairpin 2 | Alexa Fluor 488-5′-gaggagggcagcaaacgggaagagtcttcctttacgctcttcccgtttgctgccctcctcaagaaagaatgc |
* The sequences of initiator were indicated in italics, and the spacer sequences in bold. All sets of probes utilize the same initiator to trigger the group of amplifier hairpin 1 and 2. |
EV-A71感染RD细胞24 h后,用4%多聚甲醛固定30 min,然后经磷酸缓冲盐(phosphate buffered saline,PBS)-0.1% Tween 20 (PBST) 溶液穿透10 min。PBS清洗后加入30%探针缓冲液[30% formamide, 5× SSC, 9 mmol/L柠檬酸(pH值为6.0), 0.1% Tween 20, 50 μ g/mL heparin, 1× Denhardt’s solution, 10% dextran sulfate],37 ℃孵育30 min进行预杂交。随后加入与EV-A71 RNA互补的DNA HCR v3.0探针混合液(共15组oligo DNA探针,每组探针浓度为1.67 μ mol/L;取2 μ L上述探针组混合液稀释于900 μ L 30% 探针缓冲液中),37 ℃进行杂交过夜。经PBST冲洗5次后,加入扩增缓冲液(5×SSC,0.1% Tween 20,10% dextran sulfate),室温下预扩增30 min;清洗后再加入HCR发夹混合液(取6 μ L每种荧光HCR发夹分子浓度为10 μ mol/L的混合物稀释于900 μ L扩增缓冲液中),室温下避光过夜孵育,完成RNA原位杂交信号放大。
1.2.4 RNA-FISH与蛋白免疫荧光染色(immunofluorescense staining)联用将鼠抗EV71-3D抗体1∶300稀释于含5%小牛血清封闭液中,加入RNA原位杂交后的细胞中4 ℃孵育过夜,再与Cy3标记的羊抗鼠IgG抗体(1∶600)室温孵育2 h,然后用DAPI染色液室温孵育15 min,细胞清洗后于Leica激光共聚焦显微镜(Leica TCS SP5, GRE)下观察拍照。
1.2.5 qRT-PCR检测病毒基因的拷贝数EV71感染RD细胞后,分别收集感染0~24 h的细胞于TRIzol溶液中裂解,抽提细胞总RNA。利用Takara反转录试剂盒PrimeScript RT reagent Kit以随机引物进行cDNA合成,按上海翊圣生物科技有限公司Hieff qPCR SYBR Green Master Mix(No Rox)说明书进行PCR扩增,EV-A71定量上游引物为5 ′ -acgcgtatttaggtgacactatag-3 ′,下游引物为5 ′ -gaacagggggtgtcggacta-3 ′。以β -actin基因为内参照(正向引物为5 ′ -gaagtaccc~catcgagcacg-3 ′,反向引物为5 ′ -ggatagcacagcct~ggatagca-3 ′)。最后以-ddCt法计算病毒RNA的相对含量。
1.2.6 蛋白免疫印迹检测在指定时间点收集病毒感染后细胞,经western blot细胞裂解液裂解、蛋白定量后,将上述等量蛋白样品经SDS聚丙烯酰胺凝胶电泳(SDS polyacrylamide gel electrophoresis,SDS-PAGE)分离,湿膜法电转移转印到聚偏二氟乙烯(polyvinylidene difluoride,PVDF)膜上,随后以封闭液室温温育1 h,再以鼠抗EV-A71 3D单克隆抗体4 ℃孵育过夜,次日以Cy3标记的羊抗鼠二抗室温孵育1 h,膜清洗后以增强型化学发光试剂检测。
2 结果 2.1 基于HCR v3.0的RNA-FISH技术检测EV-A71 RNA方法的建立本文基于HCR v3.0的RNA-FISH信号放大技术(见图 1A),针对EV71 RNA的15个作用靶点,设计了15对分裂式探针(见图 1B和表 1),在提高杂交特异性的同时,放大了荧光信号,可以特异并直观检测到EV-A71 RNA在细胞内的表达和分布情况(见图 1C)。
2.2 HCR-FISH与qRT-PCR检测EV-A71感染细胞后病毒RNA的动态变化传统的RNA-FISH技术可对单一细胞中病毒含量变化做可视化分析,但因背景值高,定量不准确[9]。而通过结合HCR v 3.0与RNA-FISH,荧光信号的强度与目标RNA的分子数成近似线性关系[13]。本文使用Image J软件对共聚焦显微镜拍摄的照片进行像素分析,检测荧光强度,可定量目标RNA的表达。由于EV-A71感染细胞后,一般呈现细胞核凝聚、逐渐皱缩、分裂,最后细胞裂解,子代病毒释放[26]。将病毒感染后的细胞形态,尤其是细胞核的变化作为时间轴,选择RNA-FISH染色阳性细胞,结果显示,在单个细胞中,随着细胞被病毒感染,病毒RNA水平快速达到峰值,进而其含量逐渐降低,细胞裂解后基本消失(见图 2A、2B和2C)。而使用经典的RT-qPCR方法定量检测病毒RNA,可以看到病毒感染后,随着时间的推移,病毒RNA的含量逐渐升高,在8~12 h达到峰值,然后在12~24 h内始终保持在较高的水平(见图 2D)。
2.3 RNA-FISH与IF联用检测病毒RNA与3D聚合酶的相互作用本研究以RNA-FISH检测病毒RNA,并借助HCR v3.0放大荧光信号后,利用IF技术检测病毒3D蛋白,定量分析EV-A71感染的单个细胞中EV-A71 RNA与3D蛋白的表达水平,以此分析EV-A71 RNA与3D蛋白即RNA聚合酶的相互作用。结果表明,随着EV-A71感染RD细胞时间的延长,细胞核凝聚、凹陷、皱缩并且完整性被破坏,细胞逐渐凋亡,在此过程中表征病毒RNA分子数的绿色荧光相对强度逐渐降低,而表征病毒3D聚合酶的红色荧光相对强度反而逐渐增大。当RD细胞进入病毒感染后期,细胞内病毒RNA几乎消失,而病毒3D蛋白相对含量却明显升高(见图 2A, 2B, 2C和2E),且只有部分3D蛋白与病毒RNA共定位,呈黄色(见图 2A, 2B)。以经典的western blot方法同时检测EV-A71感染细胞中的3D蛋白质,结果显示,在EV-A71感染RD细胞后8 h,只能检测到3D蛋白的前体3CD和3ABCD,而在感染的中后期(即12~24 h),成熟3D蛋白的表达水平逐渐升高,并维持在相对高水平(见图 2F)。
3 讨论在病毒学研究中,常利用RT-qPCR定量细胞中的RNA水平。但是RT-qPCR定量的是细胞群体中总的病毒RNA,细胞数量的改变可能会掩盖单个细胞中病毒的真实变化,并且RT-qPCR无法对细胞中的RNA进行定位。虽然双链RNA免疫荧光可以实现对RNA的可视化分析,但是RNA的免疫标记是非特异性的[27]。而RNA-FISH技术不仅可以准确定量RNA的拷贝数,而且可以用于特定RNA的空间定位[28]。
利用RNA-FISH技术对目标RNA分子的表达和分布进行分析,常须借助信号放大技术。基于CARD的原位扩增技术一直是传统RNA-FISH提高信噪比的主要方式,但这种方法只能对RNA进行初步的定性分析,且荧光染料易扩散,成像分辨率低。近年来,HCR技术开始应用于RNA-FISH。改进的HCR v2.0产生的荧光信号与靶分子的数量近似成线性关系,可以在高度自发荧光的样品中完成RNA的相对定量以及实现亚细胞分辨率成像,但为避免HCR v2.0信号的非特异性放大,常须提高探针长度,并对探针进行多重优化选择。而新一代的HCR v3.0技术基于分裂式的RNA探针设计,可以自动地实现背景抑制。即使探针与靶位点产生非特异性结合也不会触发信号放大反应,这不仅提高了信号放大的特异性,而且提高了信号强度与靶序列数量的相关性[12]。
本文通过基于HCR v3.0的RNA-FISH技术,成功实现了对单个细胞中EV-A71 RNA的可视化检测和定量分析。通过这种检测方法得到的RNA定量结果与传统RT-qPCR定量得到的结果明显不同,这种差异可能是由于RT-qPCR定量的是细胞群体中总的病毒RNA,而随着病毒感染细胞数量的增多,则会掩盖了病毒在单个细胞中的真实变化情况。基于HCR v3.0的RNA-FISH技术可以克服传统定量RNA技术由于细胞群体数量改变而无法反映病毒RNA在单个细胞中真实变化的缺点。
此外,本文将RNA-FISH和IF联用,结合HCR v3.0技术放大RNA荧光信号,同时对EV-A71 RNA与3D蛋白在细胞中的表达进行了可视化定量分析。发现在EV-A71感染细胞后,特别是在病毒感染的中后期,病毒RNA水平明显下降的情况下,3D蛋白的相对含量反而增加(见图 2E)。这提示3D蛋白除了具有普遍认可的RNA聚合酶的功能外,可能还与诱导细胞的凋亡、子代病毒释放有关。另外,在单细胞水平上,将RNA-FISH与IF联用检测EV-A71 RNA与3D蛋白的表达变化,与经典技术检测它们在群体细胞上的表达进行比较,发现EV-A71 RNA与3D蛋白表达变化存在明显不同的趋势性特征:单细胞水平上,RNA水平快速提高达到峰值,再逐渐降低,细胞裂解时基本消失,而3D蛋白的相对含量却随病毒感染不断增加(见图 2E);然而在细胞群体水平上,在病毒感染的过程中,病毒RNA的含量逐渐升高,到感染中后期RNA水平达到峰值并维持在高位(见图 2D),而且3D蛋白的表达在早期几乎检测不到,在中后期才逐渐增加且长时间维持在高水平(见图 2F)。通过对细胞群体的分析,其中病毒组份的总量变化并不能真实反应单细胞内病毒各组份之间的真实关系。这说明RNA-FISH与IF的联用在研究病毒RNA与蛋白相互作用方面表现出了独特的优越性。
近年来,也有一些研究发现EV-A71 3D蛋白除具有RNA聚合酶功能之外,也可以介导激活炎症反应、阻滞细胞周期[29-30]。本文通过将RNA-FISH技术与IF联用发现,在病毒感染后期,病毒RNA拷贝数明显下降,而3D蛋白的表达水平却明显升高,提示EV-A71 3D蛋白除具有RNA聚合酶的功能之外,可能还存在其他的功能。
[1] |
Munsky B, Neuert G, Van Oudenaarden A. Using gene expression noise to understand gene regulation[J]. Science, 2012, 336(6078): 183-187.
[DOI]
|
[2] |
Sanchez A, Golding I. Genetic determinants and cellular constraints in noisy gene expression[J]. Science, 2013, 342(6163): 1188-1193.
[DOI]
|
[3] |
Targett-Adams P, Boulant S, Mclauchlan J. Visualization of double-stranded RNA in cells supporting hepatitis C virus RNA replication[J]. J Virol, 2008, 82(5): 2182-2195.
[DOI]
|
[4] |
Chou YY, Vafabakhsh R, Doğanay S, Gao Q, Ha T, Palese P. One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis[J]. Proc Natl Acad Sci U S A, 2012, 109(23): 9101-9106.
[DOI]
|
[5] |
Urbanek M O, Krzyzosiak W J. RNA FISH for detecting expanded repeats in human diseases[J]. Methods, 2016, 98: 115-123.
[DOI]
|
[6] |
Lauter G, Söll I, Hauptmann G. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems[J]. BMC Dev Biol, 2011, 11: 43.
[DOI]
|
[7] |
Lauter G, Söll I, Hauptmann G. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain[J]. Neural Dev, 2011, 6: 10.
[DOI]
|
[8] |
Raap AK, van de Corput MP, Vervenne RA, van Gijlswijk RP, Tanke HJ, Wiegant J. Ultra-sensitive FISH using peroxidase-mediated deposition of biotin-or fluorochrome tyramides[J]. Hum Mol Genet, 1995, 4(4): 529-534.
[DOI]
|
[9] |
Weiszmann R, Hammonds A S, Celniker S E. Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos[J]. Nat Protoc, 2009, 4(5): 605-618.
[DOI]
|
[10] |
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos[J]. Nat Protoc, 2008, 3(1): 59-69.
[DOI]
|
[11] |
Kubota K. CARD-FISH for environmental microorganisms: technical advancement and future applications[J]. Microbes Environ, 2013, 28(1): 3-12.
[DOI]
|
[12] |
Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, Cunha A, Pierce NA. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust[J]. Development, 2018, 145(12): dev165753.
[DOI]
|
[13] |
Schwarzkopf M, Liu MC, Schulte SJ, Ives R, Husain N, Choi HMT, Pierce NA. Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization[J]. Development, 2021, 148(22): dev199847.
[DOI]
|
[14] |
Duan Y, Glazier R, Bazrafshan A, Hu Y, Rashid SA, Petrich BG, Ke Y, Salaita K. Mechanically triggered hybridization chain reaction[J]. Angew Chem Int Ed Engl, 2021, 60(36): 19974-19981.
[DOI]
|
[15] |
Kelly JJ, Wen H, Brehm P. Single cell RNA-seq analysis of spinal locomotor circuitry in larval zebrafish[J]. bioRxiv, 2023, 14: 2023.06.06.543939.
[DOI]
|
[16] |
Elagoz AM, Styfhals R, Maccuro S, Masin L, Moons L, Seuntjens E. Optimization of whole mount RNA multiplexed in situ hybridization chain reaction with immunohistochemistry, clearing and imaging to visualize octopus embryonic neurogenesis[J]. Front Physiol, 2022, 13: 882413.
[DOI]
|
[17] |
Kozol RA, Conith AJ, Yuiska A, Cree-Newman A, Tolentino B, Benesh K, Paz A, Lloyd E, Kowalko JE, Keene AC, Albertson C, Duboue ER. A brain-wide analysis maps structural evolution to distinct anatomical module[J]. Elife, 2023, 12: e80777.
[DOI]
|
[18] |
Kula-Pacurar A, Wadas J, Suder A, Szczepanski A, Milewska A, Ochman M, Stacel T, Pyrc K. Visualization of SARS-CoV-2 using immuno RNA-fluorescence in situ hybridization[J]. J Vis Exp, 2020(166).
[DOI]
|
[19] |
Acheampong KK, Schaff DL, Emert BL, Lake J, Reffsin S, Shea EK, Comar CE, Litzky LA, Khurram NA, Linn RL, Feldman M, Weiss SR, Montone KT, Cherry S, Shaffer SM. Subcellular detection of SARS-CoV-2 RNA in human tissue reveals distinct localization in alveolar type 2 pneumocytes and alveolar macrophages[J]. mBio, 2021, 13(1): e0375121.
[DOI]
|
[20] |
Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71[J]. Crit Rev Microbiol, 2011, 37(4): 313-327.
[DOI]
|
[21] |
Wang H, Li K, Ma L, Wu S, Hu J, Yan H, Jiang J, Li Y. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy[J]. Virol J, 2017, 14(1): 2.
[DOI]
|
[22] |
Chang PC, Chen SC, Chen KT. The current status of the disease caused by enterovirus 71 infections: epidemiology, pathogenesis, molecular epidemiology, and vaccine development[J]. Int J Environ Res Public Health, 2016, 13(9): 890.
[DOI]
|
[23] |
Mcminn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance[J]. FEMS Microbiol Rev, 2002, 26(1): 91-107.
[DOI]
|
[24] |
Cardosa MJ, Perera D, Brown BA, Cheon D, Chan HM, Chan KP, Cho H, McMinn P. Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes[J]. Emerging Infectious Diseases, 2003, 9(4): 461-468.
[DOI]
|
[25] |
Wang H, Li Y. Recent progress on functional genomics research of enterovirus 71[J]. Virol Sin, 2019, 34(1): 9-21.
[DOI]
|
[26] |
Moshiri J, Craven AR, Mixon SB, Amieva MR, Kirkegaard K. Mechanosensitive extrusion of enterovirus A71-infected cells from colonic organoids[J]. Nat Microbiol, 2023, 8(4): 629-639.
[DOI]
|
[27] |
Son KN, Liang Z, Lipton HL. Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses[J]. J Virol, 2015, 89(18): 9383-9392.
[DOI]
|
[28] |
George L, Indig FE, Abdelmohsen K, Gorospe M. Intracellular RNA-tracking methods[J]. Open Biol, 2018, 8(10): 180104.
[DOI]
|
[29] |
Wang W, Xiao F, Wan P, Pan P, Zhang Y, Liu F, Wu K, Liu Y, Wu J. EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex[J]. PLoS Pathog, 2017, 13(1): e1006123.
[DOI]
|
[30] |
Yu J, Zhang L, Ren P, Zhong T, Li Z, Wang Z, Li J, Liu X, Zhao K, Zhang W, Yu XF. Enterovirus 71 mediates cell cycle arrest in S phase through non-structural protein 3D[J]. Cell Cycle, 2015, 14(3): 425-436.
[DOI]
|