文章快速检索     高级检索
  微生物与感染  2018, Vol. 13 Issue (4): 250-256      DOI: 10.3969/j.issn.1673-6184.2018.04.009
0
Contents            PDF            Abstract             Full text             Fig/Tab
朗格汉斯细胞与病毒感染
王建斌 , 李琦涵     
中国医学科学院/北京协和医学院医学生物学研究所, 云南省重大传染病疫苗研发重点实验室, 昆明 650118
摘要:朗格汉斯细胞位于黏膜状组织和皮肤分层鳞状上皮,是高度专职的抗原呈递细胞家族成员,也是表皮中唯一的树突细胞。其作为一种皮肤免疫细胞,在摄取、加工处理和呈递抗原及诱导T细胞反应等方面发挥着巨大作用。机体皮肤或黏膜在遭遇不同病原微生物入侵时,朗格汉斯细胞与病原体的相互作用及引起后续免疫反应的机制存在差异。本文就朗格汉斯细胞的生物学功能及其在一些病毒感染中的作用进行综述。
关键词朗格汉斯细胞    抗原呈递细胞    免疫反应    病毒感染    
Langerhans cells and viral infections
WANG Jianbin , LI Qihan     
Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
Abstract: Langerhans cells situated in stratified squamous epithelium of the skin and mucosal tissue are members of a family of highly specialized antigen-presenting cells called dendritic cells. Langerhans cells are the only dendritic cells detected in epidermis for ingesting, processing and presenting of antigens, and T cell responses. In this article, we review the biological functions of Langerhans cells and their roles in various viral infections.
Key words: Langerhans cell    Antigen-presenting cell    Immune response    Viral infection    

皮肤黏膜作为机体最大的器官,是隔离机体与外环境和防御病原微生物入侵的第一道防线,其以形成的物理、生化和免疫屏障来共同发挥防御作用[1]。皮肤黏膜免疫屏障的形成依赖一系列位于表皮和真皮中的树突细胞(dendritic cell,DC)[2]。其中,朗格汉斯细胞(Langerhans cell,LC)属于DC家族一员,位于皮肤分层鳞状上皮和黏膜状组织中,也是第1个被认识的专职抗原呈递细胞(antigen-presenting cell,APC)[3]。本文对LC在病毒感染中的作用进行综述。

1 LC

1868年,德国医学家Paul Langerhans在研究人皮肤表层时首次报道了长树突状的细胞[4],随后人们将这种细胞命名为朗格汉斯细胞;但直到一个多世纪后,诺贝尔奖得主Ralph Steinman才证明它们是DC家族中的一个特异性亚群[5]。通过对人和小鼠LC进行大量研究,发现机体在稳定条件下,非成熟的LC是位于表皮中的唯一DC,占表皮细胞的1%~3%[6]。LC的直接前体细胞是一种高表达Gr-1分子的单核细胞,且集落刺激因子1受体(colony-stimulating factor 1 receptor,CSF-1R)在LC的迁移、发育过程中发挥关键作用。此外,LC的发生、发育还依赖生长转化因子β(transforming growth factor β,TGF-β)、粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)等一系列可溶性细胞因子[7-9]。有研究发现,表皮LC表达识别捕获抗原的模式识别受体,如Toll样受体(Toll-like receptor,TLR)1、2、3、6、7、8和C型凝集素受体(C-type lectin receptor,CLR)Langerin,但缺乏TLR-4、TLR-5、TLR-9。此外,LC还表达高水平的白细胞介素8(interleukin 8,IL-8)、肿瘤坏死因子α(tumor necrosis factor α,TNF-α)、CXC趋化因子配体10 [motif chemokine (C-X-C) ligand 10,CXCL10],但几乎不产生IL-1β、IL-6和IL-10[10-12]。LC表达的这些分子在其功能正常发挥中起重要作用。通常,LC的分离和鉴定是通过其表达的HLA-DR、CD1a及Langerin(CD207)来综合确定。LC还具有一种特异性的名为伯贝克颗粒(Birbeck granule)呈网球拍状的细胞器[13],主要用来储存合成Langerin和加工降解吞入胞内的病原体[14],也可以此来区分鉴定LC。

由于LC位于机体皮肤黏膜表层,而皮肤黏膜正是一些病毒如人类免疫缺陷病毒(human immunodeficiency virus,HIV)、疱疹病毒包括单纯疱疹病毒(herpes simplex virus,HSV)和水痘-带状疱疹病毒(varicella-zoster virus,VZV)、人乳头瘤病毒(human papillomavirus,HPV)的侵入靶点,所以LC在皮肤黏膜的病毒感染中具有重要作用。LC能通过黏附分子E-钙黏蛋白在彼此之间以及与周围的角质之间形成紧密的网络结构,以抵御和监视病原微生物的入侵[7]。一旦有外来抗原和病原体突破机体的物理和生化屏障接触到LC的树突,LC将迅速走向成熟并伴随一系列表型变化,如LC表面的主要组织相容性复合体(major histocompatibility complex,MHC)Ⅰ和Ⅱ类分子,以及共刺激分子CD80、CD86、CD40表达上调;CD83的获得性表达;细胞表面Langerin和E-钙黏蛋白表达下调等[8]。淋巴细胞归巢受体CCR7的上调表达介导LC通过输入淋巴管向局部引流淋巴结迁移,并不断走向成熟[2],活化的LC分泌相应的趋化因子、细胞因子,其抗原呈递能力也不断增强。因此,LC在防御病原微生物感染中不仅发挥“哨兵”细胞的作用,也是连接天然免疫与适应性免疫的重要桥梁[15]

2 LC与HIV感染

HIV作为一种性传播病毒,感染机体后可损伤人体免疫系统,最终并发各种致死性的机会性感染和恶性肿瘤,其感染已成为全球重要的公共卫生问题之一。大量研究表明,跨生殖器黏膜的性传播是HIV最常见感染途径,而黏膜组织中的DC亚群通过特定受体参与HIV传递[16-19]。LC存在于皮肤表皮和大多数黏膜分层上皮,如宫颈外膜、阴道和包皮等,且特征性地表达Langerin[18]及HIV结合受体CD4和CCR5[20]。很多研究发现,LC能被HIV感染,并有效将HIV传递给T细胞导致T细胞感染[21-23],成为HIV通过性传播途径感染过程中遇到的第1个DC。

关于LC在HIV传播过程中的具体作用存在争议。de Witte及其同事认为,表皮未成熟LC表达的Langerin是防御HIV传播的自然保护性屏障[24]。LC的Langerin可有效捕获HIV,导致HIV内化进入细胞,并随后将HIV靶向运输至Birbeck颗粒进行降解,因此LC抑制HIV感染和传播。20世纪有科学家通过皮肤移植物[25-26]或表皮层与T细胞共培养模型[27]发现,LC可将HIV转移至CD4+ T细胞,并迅速提高HIV增殖和感染能力。2014年,Nasr及其同事使用胶原酶消化分离的人LC,对de Witte等的研究结果提出质疑[28]。该研究表明,LC对HIV感染和传播存在两个阶段的转移:第一阶段显示LC在接触HIV 2 h内确实能通过Langerin将HIV转移至T细胞,该阶段的转移可直接被中和Langerin的单克隆抗体阻断,暗示了Langerin的作用,并且该观察结果类似于来自单核细胞的DC[17];第二阶段的转移可被阻断HIV复制的药物齐多夫定(zidovudine,AZT)抑制,表明该阶段转移的病毒是增殖后的病毒,即HIV进入LC后增殖并将新生子代病毒转移给了T细胞。Ganor等的研究结果[29]与Nasr等的一致,他们指出人类包皮LC结合HIV后可改变其分布,并在1 h内转移HIV给T细胞,阴道LC也有类似功能。最近,van den Berg等也证明Langerin促进HIV转移并引发LC及其他DC成熟,刺激CD8+ T细胞的活化[30]。Harman等也发现,HIV激活LC后,足以使其成熟并从上皮组织迁移至黏膜下层或下游引流淋巴结,在那里LC可有效地与CD4+ T细胞相互作用并将病毒转移至CD4+ T细胞,但同时抑制其溶酶体功能以防止自身凋亡和降解[31]

此外,流行病学研究表明,性传播感染(sexually transmitted infection,STI)可直接和间接影响LC,从而增加HIV的易感性[32-35]。女性阴道和男性包皮生殖器黏膜组织中的LC不仅可与HIV相互作用,还受STI病原的影响。最新研究发现,一些STI病原与LC直接相互作用,与HIV竞争结合Langerin或降低Langerin表达量,从另一方面提高了LC进入受体CD4和辅助性受体CCR5捕获HIV的能力,还增强了LC的增殖性感染能力,从而促进HIV传播。HSV-2是最常见的STI病原体,预先感染了HSV-2的个体HIV易感概率比未感染HSV-2者提高3倍以上[36-38]。据估计,在某些地区如撒哈拉以南非洲,HSV-2感染可能与30%~50%的新发HIV感染有关[39]。STI诱导产生的促炎细胞因子也能影响LC对HIV传播的易感性[40],目前已证明TNF-α能通过激活核因子κB(nuclear factor κB,NF-κB)信号通路来增强HIV复制[41-42]

总之,LC对HIV的感染和传播受不同因素的影响。LC的激活状态似乎是HIV易感性的重要决定因素,尽管未成熟的LC可形成对HIV感染的保护性屏障[24],但活化的LC促进HIV感染和传播[28]

3 LC与疱疹病毒的相互作用

HSV和VZV是能感染角质形成细胞和LC的典型嗜上皮性病毒[43-44],急性皮肤黏膜感染后可在感觉神经节中建立终身潜伏感染。尽管表皮LC是与疱疹病毒相互作用的第1个DC,但直到最近疱疹病毒的免疫机制才逐渐被人们解开。

关于LC在抗HSV应答中作用的最早研究之一表明,在HSV-1感染脚垫之前从小鼠皮肤消除LC可导致HSV-1毒力增加[45]。随后又有报道表明,在小鼠皮下注射HSV-1后会引起LC在下游淋巴结中累积,其数量在感染后第3天达到峰值;结果还表明HSV-1免疫后小鼠淋巴结中的T细胞在体外对HSV-1抗原有免疫反应,但这些反应在预先从皮肤敲除LC后减弱[46]。这些研究表明,LC在诱导对HSV的细胞免疫中具有重要作用[47]。在人类复发性疱疹病变中,CD4+ T细胞首先浸润至病灶部位,然后行使杀伤功能并清除感染的CD8+ T细胞[43, 48]。小鼠模型研究发现,HSV可感染LC[49],但这些LC并不是呈递HSV抗原至淋巴结中T细胞的DC,相反,该功能是由真皮层DC来完成的[50]。此外,在小鼠研究中也发现,LC不是引发病毒特异性细胞毒性T细胞反应的APC[51]。最近,Kim等使用人类包皮移植物等3种不同系统揭示了原因[52]。他们发现LC与HSV-2相互作用导致LC增殖性感染,最终诱导LC发生细胞凋亡并迁移至真皮层;在真皮层,CD141+ DC和CD14+ DC吞噬垂死的HSV感染的LC,并将抗原呈递给淋巴结中的T细胞,启动细胞免疫。由于CD141+ DC属于交叉呈递细胞,可特异性地将抗原交叉呈递给CD8+ T细胞,这就解释了为什么CD8+ T细胞能被激活并随后渗入疱疹病灶而清除感染,然后转化为组织驻留记忆性T细胞[53]。因此,LC起呈递HSV抗原给黏膜下DC的作用,这与HIV感染中LC的作用及最终命运有所不同。

研究表明,呼吸道黏膜DC可能是VZV初次感染期间遇到的第1批细胞,且能将病毒转运至人类扁桃体CD4+ T细胞,这些T细胞表达皮肤归巢标记,可在原发病毒血症期间直接从淋巴结向皮肤转运VZV[54-55]。病毒一旦到达皮肤,会感染皮肤上皮细胞,导致独特的脓包性病变[56-58]。此外,最近有研究报道了患有水痘或带状疱疹的人类皮肤中DC亚群类型和分布发生的变化,并与单纯疱疹病变进行比较,发现在HSV、VZV感染病变皮肤中DC-SIGN+ DC的比例没有显著改变,但与HSV感染不同的是,表皮LC显著减少;存在于LC中的VZV结构和非结构蛋白与复制病毒一致,表明这些细胞在体内被感染;VZV感染期间表皮LC显著减少不是LC的标记CD1a和Langerin在皮肤LC中表达减少导致的,VZV感染的LC也没有发生显著的细胞凋亡[59]。因此,皮肤和呼吸道黏膜中的LC可能参与VZV感染的早期阶段[55]。总之,通过以上研究可推测,存在于呼吸道黏膜中的LC可能是最早感染VZV并传播VZV到淋巴结的细胞,然后VZV感染淋巴结T细胞,感染的T细胞作为炎症浸润的一部分迁移到皮肤[59-61],因此LC是负责将VZV扩散到皮肤细胞的细胞。在皮肤病灶VZV又可感染表皮内LC,感染的表皮内LC作为专职APC可迁移到下游引流淋巴结感染另外的T细胞,新感染的T细胞又作为炎症浸润的一部分迁移回皮肤,引起额外的皮肤损伤。

4 LC在麻疹病毒(measles virus,MV)感染中的作用

MV是一种高度传染性的嗜淋巴细胞和骨髓细胞病毒,通过呼吸道传播。因此,病毒入侵的最初靶点必须存在于呼吸道黏膜表面,而表达Langerin的LC大量存在于上呼吸道上皮中[62-64]。目前,有关LC在MV感染中的作用报道较少。van der Vlist及其团队发现人LC能通过Langerin捕获MV抗原,且未成熟和成熟的LC均能通过HLA-Ⅱ类分子将MV抗原呈递给特异性CD4+ T细胞。MV不能在未成熟的LC中完成其增殖性感染,因此细胞不存在通过HLA-Ⅰ类分子呈递内源性MV抗原;相反,MV能在成熟的LC中完成其增殖性感染,细胞可将新合成的病毒抗原呈递给MV特异性CD8+ T细胞。他们还发现,未成熟和成熟的LC均不能交叉呈递外源紫外线灭活的MV或MV感染后的凋亡细胞至淋巴细胞。通过这些结果推测,人LC的免疫激活似乎是LC中的MV增殖性感染和通过内源性抗原呈递途径启动CD8+ T细胞的先决条件[65]

5 结语

LC是机体免疫系统的重要组成部分,其作为DC家族中的一种独特类型成员,已成为病毒通过皮肤黏膜初次感染机体和维持机体自身稳定的研究重点,尤其是其在病毒感染中作为专职APC摄取、加工处理和呈递病毒抗原及诱导T细胞反应等方面。

参考文献
[1]
Bos JD, Kapsenberg ML. The skin immune system:progress in cutaneous biology[J]. Immunol Today, 1993, 14(2): 75-78. [DOI]
[2]
Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature, 1998, 392(6673): 245-252. [DOI]
[3]
Cunningham AL, Abendroth A, Jones C, Nasr N, Turville S. Viruses and Langerhans cells[J]. Immunol Cell Biol, 2010, 88(4): 416-423. [DOI]
[4]
Langerhans P. Ueber die Nerven der menschlichen Haut[J]. Arch Pathol Anat Physiol Klin Med, 1868, 44(2-3): 325-337. [DOI]
[5]
Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice[J]. Proc Natl Acad Sci USA, 1978, 75(10): 5132-5136. [DOI]
[6]
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV[J]. Rev Med Virol, 2017, 27(2). [DOI]
[7]
Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M. Langerhans cells arise from monocytes in vivo[J]. Nat Immunol, 2006, 7(3): 265-273. [DOI]
[8]
Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells[J]. Nat Rev Immunol, 2008, 8(12): 935-947. [DOI]
[9]
Borkowski TA, Letterio JJ, Farr AG, Udey MC. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology:the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells[J]. J Exp Med, 1996, 184(6): 2417-2422. [DOI]
[10]
Flacher V, Bouschbacher M, Verronèse E, Massacrier C, Sisirak V, Berthier-Vergnes O, de Saint-Vis B, Caux C, Dezutter-Dambuyant C, Lebecque S, Valladeau J. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria[J]. J Immunol, 2006, 177(11): 7959-7967. [DOI]
[11]
Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells[J]. Immunity, 2012, 37(1): 60-73. [DOI]
[12]
van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition[J]. J Immunol, 2007, 178(4): 1986-1990. [DOI]
[13]
Mc Dermott R, Ziylan U, Spehner D, Bausinger H, Lipsker D, Mommaas M, Cazenave JP, Raposo G, Goud B, de la Salle H, Salamero J, Hanau D. Birbeck granules are subdomains of endosomal recycling compartment in human epidermal Langerhans cells, which form where langerin accumulates[J]. Mol Biol Cell, 2002, 13(1): 317-335. [DOI]
[14]
van der Vlist M, Geijtenbeek TB. Langerin functions as an antiviral receptor on Langerhans cells[J]. Immunol Cell Biol, 2010, 88(4): 410-415. [DOI]
[15]
de Jong MA, Geijtenbeek TB. Langerhans cells in innate defense against pathogens[J]. Trends Immunol, 2010, 31(12): 452-459. [DOI]
[16]
Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, Kewalramani VN, Littman DR, Figdor CG, van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells[J]. Cell, 2000, 100(5): 587-597. [DOI]
[17]
Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stössel H, Romani N, Piatak M Jr, Lifson JD, Pope M, Cunningham AL. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells[J]. Blood, 2004, 103(6): 2170-2179. [DOI]
[18]
Turville SG, Cameron PU, Handley A, Lin G, Pöhlmann S, Doms RW, Cunningham AL. Diversity of receptors binding HIV on dendritic cell subsets[J]. Nat Immunol, 2002, 3(10): 975-983. [DOI]
[19]
Veazey RS, Klasse PJ, Schader SM, Hu Q, Ketas TJ, Lu M, Marx PA, Dufour J, Colonno RJ, Shattock RJ, Springer MS, Moore JP. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion[J]. Nature, 2005, 438(7064): 99-102. [DOI]
[20]
Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, Orenstein JM, Zimmerman PA, Blauvelt A. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms[J]. Proc Natl Acad Sci USA, 2003, 100(14): 8401-8406. [DOI]
[21]
Blauvelt A, Glushakova S, Margolis LB. HIV-infected human Langerhans cells transmit infection to human lymphoid tissue ex vivo[J]. AIDS, 2000, 14(6): 647-651. [DOI]
[22]
Kawamura T, Cohen SS, Borris DL, Aquilino EA, Glushakova S, Margolis LB, Orenstein JM, Offord RE, Neurath AR, Blauvelt A. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants[J]. J Exp Med, 2000, 192(10): 1491-1500. [DOI]
[23]
Kawamura T, Qualbani M, Thomas EK, Orenstein JM, Blauvelt A. Low levels of productive HIV infection in Langerhans cell-like dendritic cells differentiated in the presence of TGF-beta1 and increased viral replication with CD40 ligand-induced maturation[J]. Eur J Immunol, 2001, 31(2): 360-368. [DOI]
[24]
de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells[J]. Nat Med, 2007, 13(3): 367-371. [DOI]
[25]
Ayehunie S, Groves RW, Bruzzese AM, Ruprecht RM, Kupper TS, Langhoff E. Acutely infected Langerhans cells are more efficient than T cells in disseminating HIV type 1 to activated T cells following a short cell-cell contact[J]. AIDS Res Hum Retroviruses, 1995, 11(8): 877-884. [DOI]
[26]
Pope M, Betjes G, Romani N, Hirmand H, Cameron PU, Hoffman L, Gezelter S, Schuler G, Steinman RM. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1[J]. Cell, 1994, 78(3): 389-398. [DOI]
[27]
Berger R, Gartner S, Rappersberger K, Foster CA, Wolff K, Stingl G. Isolation of human immunodeficiency virus type 1 from human epidermis:virus replication and transmission studies[J]. J Invest Dermatol, 1992, 99(3): 271-277. [DOI]
[28]
Nasr N, Lai J, Botting RA, Mercier SK, Harman AN, Kim M, Turville S, Center RJ, Domagala T, Gorry PR, Olbourne N, Cunningham AL. Inhibition of two temporal phases of HIV-1 transfer from primary Langerhans cells to T cells:the role of langerin[J]. J Immunol, 2014, 193(5): 2554-2564. [DOI]
[29]
Ganor Y, Zhou Z, Tudor D, Schmitt A, Vacher-Lavenu MC, Gibault L, Thiounn N, Tomasini J, Wolf JP, Bomsel M. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans-T cell conjugates[J]. Mucosal Immunol, 2010, 3(5): 506-522. [DOI]
[30]
van den Berg LM, Cardinaud S, van der Aar AM, Sprokholt JK, de Jong MA, Zijlstra-Willems EM, Moris A, Geijtenbeek TB. Langerhans cell-dendritic cell cross-talk via langerin and hyaluronic acid mediates antigen transfer and cross-presentation of HIV-1[J]. J Immunol, 2015, 195(4): 1763-1773. [DOI]
[31]
Harman AN, Wilkinson J, Bye CR, Bosnjak L, Stern JL, Nicholle M, Lai J, Cunningham AL. HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells[J]. J Immunol, 2006, 177(10): 7103-7113. [DOI]
[32]
Fleming DT, Wasserheit JN. From epidemiological synergy to public health policy and practice:the contribution of other sexually transmitted diseases to sexual transmission of HIV infection[J]. Sex Transm Infect, 1999, 75(1): 3-17. [DOI]
[33]
Cohen MS. HIV and sexually transmitted diseases:lethal synergy[J]. Top HIV Med, 2004, 12(4): 104-107.
[34]
Hester RA, Kennedy SB. Candida infection as a risk factor for HIV transmission[J]. J Womens Health (Larchmt), 2003, 12(5): 487-494. [DOI]
[35]
Wasserheit JN. Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases[J]. Sex Transm Dis, 1992, 19(2): 61-77. [DOI]
[36]
de Jong MA, de Witte L, Taylor ME, Geijtenbeek TB. Herpes simplex virus type 2 enhances HIV-1 susceptibility by affecting Langerhans cell function[J]. J Immunol, 2010, 185(3): 1633-1641. [DOI]
[37]
Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women:systematic review and meta-analysis of longitudinal studies[J]. AIDS, 2006, 20(1): 73-83. [DOI]
[38]
Wald A, Link K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons:a meta-analysis[J]. J Infect Dis, 2002, 185(1): 45-52. [DOI]
[39]
Freeman EE, Orroth KK, White RG, Glynn JR, Bakker R, Boily MC, Habbema D, Buvé A, Hayes R. Proportion of new HIV infections attributable to herpes simplex 2 increases over time:simulations of the changing role of sexually transmitted infections in sub-Saharan African HIV epidemics[J]. Sex Transm Infect, 2007, 83(Suppl 1): i17-i24.
[40]
de Jong MA, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TB. TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo[J]. J Clin Invest, 2008, 118(10): 3440-3452. [DOI]
[41]
Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B[J]. Proc Natl Acad Sci USA, 1989, 86(7): 2336-2340. [DOI]
[42]
Matsuyama T, Yoshiyama H, Hamamoto Y, Yamamoto N, Soma G, Mizuno D, Kobayashi N. Enhancement of HIV replication and giant cell formation by tumor necrosis factor[J]. AIDS Res Hum Retroviruses, 1989, 5(2): 139-146. [DOI]
[43]
Cunningham AL, Turner RR, Miller AC, Para MF, Merigan TC. Evolution of recurrent herpes simplex lesions. An immunohistologic study[J]. J Clin Invest, 1985, 75(1): 226-233. [DOI]
[44]
Nikkels AF, Debrus S, Sadzot-Delvaux C, Piette J, Delvenne P, Rentier B, Piérard GE. Comparative immunohistochemical study of herpes simplex and varicella-zoster infections[J]. Virchows Arch A Pathol Anat Histopathol, 1993, 422(2): 121-126. [DOI]
[45]
Sprecher E, Becker Y. Skin Langerhans cells play an essential role in the defense against HSV-1 infection[J]. Arch Virol, 1986, 91(3-4): 341-349. [DOI]
[46]
Sprecher E, Becker Y. Langerhans cell density and activity in mouse skin and lymph nodes affect herpes simplex type 1(HSV-1) pathogenicity[J]. Arch Virol, 1989, 107(3-4): 191-205. [DOI]
[47]
Sprecher E, Becker Y. Detection of IL-1 beta, TNF-alpha, and IL-6 gene transcription by the polymerase chain reaction in keratinocytes, Langerhans cells and peritoneal exudate cells during infection with herpes simplex virus-1[J]. Arch Virol, 1992, 126(1-4): 253-269. [DOI]
[48]
Koelle DM, Liu Z, McClurkan CM, Topp MS, Riddell SR, Pamer EG, Johnson AS, Wald A, Corey L. Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus[J]. J Clin Invest, 2002, 110(4): 537-548. [DOI]
[49]
Puttur FK, Fernandez MA, White R, Roediger B, Cunningham AL, Weninger W, Jones CA. Herpes simplex virus infects skin gamma delta T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation[J]. J Immunol, 2010, 185(1): 477-487. [DOI]
[50]
Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, Knipe DM, Iwasaki A. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2[J]. J Exp Med, 2003, 197(2): 153-162. [DOI]
[51]
Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, Carbone FR. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells[J]. Science, 2003, 301(5641): 1925-1928. [DOI]
[52]
Kim M, Truong NR, James V, Bosnjak L, Sandgren KJ, Harman AN, Nasr N, Bertram KM, Olbourne N, Sawleshwarkar S, McKinnon K, Cohen RC, Cunningham AL. Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin[J]. PLoS Pathog, 2015, 11(4): e1004812. [DOI]
[53]
Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation[J]. J Exp Med, 2007, 204(3): 595-603. [DOI]
[54]
Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM. Tropism of varicella-zoster virus for human tonsillar CD4+ T lymphocytes that express activation, memory, and skin homing markers[J]. J Virol, 2002, 76(22): 11425-11433. [DOI]
[55]
Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM. Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-α[J]. J Exp Med, 2004, 200(7): 917-925. [DOI]
[56]
Chen TM, George S, Woodruff CA, Hsu S. Clinical manifestations of varicella-zoster virus infection[J]. Dermatol Clin, 2002, 20(2): 267-282. [DOI]
[57]
Arvin AM, Moffat JF, Redman R. Varicella-zoster virus:aspects of pathogenesis and host response to natural infection and varicella vaccine[J]. Adv Virus Res, 1996, 46: 263-309. [DOI]
[58]
Muraki R, Baba T, Iwasaki T, Sata T, Kurata T. Immunohistochemical study of skin lesions in herpes zoster[J]. Virchows Arch A Pathol Anat Histopathol, 1992, 420(1): 71-76. [DOI]
[59]
Huch JH, Cunningham AL, Arvin AM, Nasr N, Santegoets SJ, Slobedman E, Slobedman B, Abendroth A. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection[J]. J Virol, 2010, 84(8): 4060-4072. [DOI]
[60]
Nikkels AF, Sadzot-Delvaux C, Piérard GE. Absence of intercellular adhesion molecule 1 expression in varicella zoster virus-infected keratinocytes during herpes zoster:another immune evasion strategy?[J]. Am J Dermatopathol, 2004, 26(1): 27-32. [DOI]
[61]
Leinweber B, Kerl H, Cerroni L. Histopathologic features of cutaneous herpes virus infections (herpes simplex, herpes varicella/zoster):a broad spectrum of presentations with common pseudolymphomatous aspects[J]. Am J Surg Pathol, 2006, 30(1): 50-58. [DOI]
[62]
Schon-Hegrad MA, Oliver J, McMenamin PG, Holt PG. Studies on the density, distribution, and surface phenotype of intraepithelial class Ⅱ major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways[J]. J Exp Med, 1991, 173(6): 1345-1356. [DOI]
[63]
Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR. A major lung CD103(alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins[J]. J Immunol, 2006, 176(4): 2161-2172. [DOI]
[64]
Lambrecht BN, Hammad H. Biology of lung dendritic cells at the origin of asthma[J]. Immunity, 2009, 31(3): 412-424. [DOI]
[65]
van der Vlist M, de Witte L, de Vries RD, Litjens M, de Jong MA, Fluitsma D, de Swart RL, Geijtenbeek TB. Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4+ T cells but are incapable of cross-presentation[J]. Eur J Immunol, 2011, 41(9): 2619-2631. [DOI]

文章信息

王建斌, 李琦涵
WANG Jianbin, LI Qihan
朗格汉斯细胞与病毒感染
Langerhans cells and viral infections
微生物与感染, 2018, 13(4): 250-256.
Journal of Microbes and Infections, 2018, 13(4): 250-256.
通信作者
李琦涵
E-mail:liqihan@imbcams.com.cn
基金项目
中国医学科学院医学与健康科技创新工程重大协同创新项目(2016-I2M-1-019),云南省重大专项(2017ZF020),国家自然科学基金(31670173),云南省科学技术厅项目(2017ZF006)

工作空间