据世界卫生组织(World Health Organization,WHO)统计,目前全世界大约有3 700万人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染者。抗反转录病毒疗法能够显著延长感染者的寿命。然而,从发现HIV至今,艾滋病仍无法治愈。20世纪末,在一些处于慢性感染期的HIV感染者体内发现了一种能中和多种不同类型HIV病毒株的抗体,称为广谱中和抗体(broadly neutralizing antibody,bNAb)[1]。这些体内产生了广谱中和抗体的感染者表现出更强控制病毒载量的能力[2]。因此,人体免疫系统产生HIV广谱中和抗体的保护机制及其诱导策略值得深入探索。
1 HIV广谱中和抗体的保护机制HIV主要感染CD4+ T细胞与单核-巨噬细胞,还能将自身基因组通过反转录整合到宿主基因组。潜伏感染的病毒及基因高度变异的病毒可逃脱宿主免疫,在病毒长期慢性感染过程中,部分患者体内变异的病毒抗原持续刺激宿主而逐渐产生广谱中和抗体,这些个体中病毒滴度可得到良好控制,从而显著延长感染者的存活期。
HIV表面约有10个由gp160组成的三聚体蛋白,在各类病毒中属于较少的,从而增加了抗体的识别难度[3]。目前已有的广谱中和抗体通常通过结合HIV表面gp160蛋白来捕获病毒,同时可通过病毒膜上的脂质或糖类以增强对病毒的锁定[3]。由于突变的积累,广谱中和抗体末端的互补决定区3(complementarity determining region 3,CDR3)比普通抗体长,广谱性增加,但突变也可能导致抗体不稳定[3-4],这是广谱中和抗体面对变异迅速的HIV仍具有良好的控制病毒载量的原因之一。捕获病毒后,广谱中和抗体可通过自身介导抗体依赖的细胞介导的细胞毒作用(antibody-dependent cell-mediated cytotoxicity,ADCC)、调理作用及激活补体等效应来调动免疫系统完成对病毒的清除。相比其他小分子化合物,广谱中和抗体的优势在于它能广泛、特异性地结合并中和不同类型HIV,具有更强的抗病毒能力。因此,广谱中和抗体不仅能结合抗原,发挥结合抗体的抗病毒效应,还能通过IgG Fc片段发挥ADCC作用而参与抗病毒免疫反应[5]。
2 HIV广谱中和抗体的研发策略 2.1 抗原表位大多数HIV广谱中和抗体主要针对HIV唯一暴露的表面抗原,即花苞状的包膜蛋白(gp120和gp41),从而在病毒入侵宿主细胞过程中发挥作用。目前,主要通过构建HIV表面包膜蛋白三聚体来诱导广谱中和抗体[6],而包膜蛋白三聚体的结构往往是决定广谱中和抗体能否有效发挥作用的关键,现已发现多个可能诱导广谱中和抗体的靶点。
表 1列出了一些HIV广谱中和抗体,并根据其结合位点进行了分类。这些靶点包括HIV gp120与CD4受体、CCR4协同受体、CXCR4协同受体的结合位点,gp120可变区V1、V2、V3的结合位点,以及gp41的一些结合位点[7-8]。如针对HIV包膜蛋白的广谱中和抗体PGT121、10E8正在进行Ⅰ期临床试验[9-10],N6正在进行Ⅱ期临床试验[11]。到目前为止,全世界只有一个抗HIV抗体被美国食品药品管理局(Food and Drug Administration, FDA)批准通过[12]。2018年3月7日,FDA正式批准HIV抗体ibalizumab-uiyk/TMB-355 (商品名:Trogarzo)上市,这是世界上首个被FDA批准通过的抗HIV抗体,针对CD4受体,阻止HIV与CD4受体结合[13]。目前有很多广谱中和抗体被开发并进行临床试验,其他一些HIV治疗抗体也在进一步评估和探讨中[11, 14]。
Name | Breath(%) | IC50(μg/mL) | Reference |
CD4 binding site | |||
B12 | 35-75 | 2.82 | 1, 15, 16 |
HJ16 | 36 | 8.01 | 1, 17 |
VRC01 | 88-93 | 0.09 | 1, 18 |
CH103 | >50 | NA | 19 |
N6 | 98 | 0.09 | 20 |
V1/V2 | |||
PG9 | 77-83 | 0.08 | 1, 21 |
PGT145 | 78 | 0.29 | 22 |
Glycan-V3 | |||
2G12 | 28-39 | 1.45 | 1, 23 |
PGT121 | 70 | 0.03 | 1, 24 |
PGT128 | 72 | 0.02 | 1, 25 |
MPER | |||
2F5 | 55-67 | 1.44 | 1, 20, 26 |
4E10 | 85-100 | 1.62 | 1, 26 |
10E8 | 98-99 | 0.25 | 1, 27 |
Z13 | 35 | 40 | 1, 28 |
影响广谱中和抗体产生的因素包括宿主因素和病毒因素。在宿主方面,目前仅知广谱中和抗体与慢性感染和重复感染有关。有一项研究分析能产生与不能产生广谱中和抗体的HIV感染者,发现能产生广谱中和抗体的个体可上调RAB11FIP5,且在NK细胞中表达最高,但机制尚不清楚[29]。对病毒方面了解甚少,但观察到某些毒株可引起不同个体产生类似的广谱中和抗体,这对研发能诱导机体产生广谱中和抗体的HIV疫苗十分重要,但尚未筛选到相关病毒[30]。
2.3 诱导机制及免疫策略抗病毒抗体研究中,早期一般通过向实验动物注射抗原诱导体液免疫再分离血清而筛选获得目标抗体。这种方法并不能支撑广谱中和抗体的筛选,尤其是全人源的广谱中和抗体。现在通常采用建立基因库的方法进行表达,从B细胞中将轻链和重链基因克隆出来,使用的B细胞可以是从天然感染人群中筛选的,也可以使用病毒样颗粒等手段在实验动物或健康人体内诱导。而对于HIV广谱中和抗体,研究人员最初是在天然感染者中发现并分离筛选到了能表达广谱中和抗体的B细胞。目前,主要通过免疫诱导方式来筛选广谱中和抗体。
研究人员在临床上观察到一个HIV感染者可能携带多种不同毒株,由此设想初始免疫不一定能引发足够强的或足够广谱的免疫反应来应对不同毒株的感染[31]。虽然目前没有任何证据表明中和能力和中和宽度与初始免疫和重复感染的时间间隔有关,但病毒携带两种及以上病毒的时间间隔与中和宽度有关[32]。这些发现启发了科研人员使用序贯免疫方法来开发广谱中和抗体。按照一定的次序使用多种抗原对实验对象进行免疫,诱导广谱中和抗体并进行筛选,可使研究人员不再过度依赖天然感染者进行实验,从而加快了广谱中和抗体的研究进程[33]。在序贯免疫用于广谱中和抗体诱导之前,研究人员尝试了各种诱导广谱中和抗体的方法,希望找到针对保守表位的抗体,如使用能产生HIV包膜蛋白的DNA质粒、不能复制的缺陷HIV颗粒、病毒样颗粒构建三聚体蛋白,以及使用佐剂来诱导广谱中和抗体,但都失败了[34]。有一项采用序贯免疫策略的研究,利用不同HIV毒株的病毒样颗粒来诱导广谱中和抗体,在实验动物体内表现出较强的免疫反应,连续接种后动物体内的抗体水平不断增加,且在多种不用HIV亚型连续接种的动物体内产生了更强大的广谱中和抗体反应[35]。虽然序贯免疫表现出了优异的诱导广谱中和抗体的能力,但动物实验与临床试验之间存在本质性的差别,实验动物水平研制出的抗体在人源化后仍存在不确定性。此外,目前从大量抗体中筛选高效广谱中和抗体与筛选各种小分子化合物药物一样,成本高且遥遥无期。随着生物信息学的发展,未来通过计算机模拟来优化筛选过程以提高筛选的准确性,制订最优化的免疫顺序,大大降低序贯免疫的成本,才是序贯免疫未来发展的趋势。
2.4 评价体系确定广谱中和抗体是否研制成功,建立稳定、适宜的抗体效能评价方法十分重要。恒河猴是猴免疫缺陷病毒(simian immunodeficiency virus,SIV)感染的天然宿主,疾病进程与人感染HIV-1相似的,可在一定程度上反映慢病毒感染后宿主的免疫应答特征。采用SHIV(SIV骨架与HIV-1包膜蛋白的嵌合病毒)建立的恒河猴感染模型,可诱导针对HIV-1包膜蛋白的体液免疫应答,对HIV-1疫苗研发更具有借鉴意义。针对HIV-1膜蛋白的中和抗体假病毒评价体系,应覆盖国际通用序列(NIH AIDS Reagent Program提供的全球通用的12个HIV-1包膜蛋白参考序列克隆),并覆盖地域特异性流行性毒株,以评价HIV-1中和抗体的强度与广度。具体评价指标主要为抗体的保护能力,即抗体与病毒的结合能力和中和能力。在VRC01广谱中和抗体测试中,研究人员采用了称为“抗体介导预防”(antibody-mediated prevention,AMP)的方法,直接给测试对象注射抗体来观察抗体的保护作用,以代替传统的使用抗原诱导主动免疫的方法[36]。这个理念正逐渐被接受。
2.5 分离方法筛选广谱中和抗体的一个重要前提是获得足够多的可供筛选的实验样本,同时有足够准确的筛选方法将不能中和的抗体剔除,以减少假阳性。目前,广谱中和抗体的筛选方法主要有4种:噬菌体展示技术、B细胞永生化技术、单个B细胞培养直接功能筛选、抗体特异性的单个B细胞筛选。
2.5.1 噬菌体展示技术噬菌体展示技术是一种将外源蛋白质的编码序列整合到噬菌体基因组中,以融合蛋白的方式表达于噬菌体表面的一种技术。其原理是将一段外源目的基因插入噬菌体中一个编码特定外膜蛋白的基因中,使噬菌体的外壳膜蛋白能与外源DNA所编码的蛋白形成融合蛋白,展示在噬菌体表面。该技术可在很大程度上将目的基因表达在噬菌体外壳膜蛋白的表面,并保持原有的结构和生物学活性,还可获得全人源单克隆抗体,减少甚至消除抗体在体内的排异反应。其局限性在于产生的抗体多样性取决于噬菌体文库的来源、多样性和筛选过程[37]。
2.5.2 B细胞永生化技术1977年,研究者采用Epstein-Barr病毒(Epstein-Barr virus)来介导转化记忆B细胞,但效率非常低,很难得到大量抗原特异的B细胞[38]。2004年,研究者在转化过程中加入多克隆抗体激动剂,转化效率大幅提升。该技术可使用少量细胞对抗体进行筛选,且筛选到的细胞可直接进行培养和增殖,以产生人源化的广谱中和抗体。相比噬菌体展示技术,B细胞永生化技术筛选抗体通量更大,工作量更小,成本更低。早期的B12广谱中和抗体就是使用该方法筛选的[39]。
2.5.3 基于单个B细胞培养技术的筛选单个B细胞培养技术是近10年来抗体领域最常用的技术之一。其技术路线是将记忆B细胞单个分入96孔板,对每个孔单独进行中和测试,挑选阳性孔行单细胞反转录-聚合酶链反应(reverse transcription-polymerase chain reaction,RT-PCR),测序,分离抗体,测试抗体的中和能力。该技术可根据不同需求分为随机单个B细胞筛选和抗体特异的单个B细胞筛选。其优势在于保留了抗体可变区的天然配对,基因多样性得到了保存,需要的细胞数量少,筛选效率高,可产生全人源抗体。但对设备要求相对较高,需流式细胞仪,尤其是进行大规模筛选时。近年来,一些广谱中和抗体如PG9和VRC01就是通过这种方法筛选获得的[40]。
3 最新进展2017年,一篇发表于Science Immunology的研究开发了一种针对gp41的高效广谱中和抗体10E8,能中和98%的HIV毒株,具有很好的开发潜力[41]。2018年,陈志伟等通过构建串联双价广谱中和抗体,获得一种潜在的能预防和治疗艾滋病的单克隆抗体[42]。他们发现,通过保留亲本广谱中和抗体的2个单链可变片段结合域,能有效提升中和宽度和效力,并在人源化小鼠中得到有效验证[42]。
4 结语广谱中和抗体的广谱性意味着能中和尽可能多的毒株,但在提升广谱性的同时出现共同抗原的概率大大增加,无形中给广谱中和抗体的研发增加了难度。虽然目前尚无研究表明广谱中和抗体能彻底清除体内HIV,但能帮助控制艾滋病的发展,有效降低患者体内病毒载量,这一具体机制尚未阐明[13]。由于广谱中和抗体研制成本高,容易产生逃逸,至今难以用于临床。近年来,随着测序成本的降低及相关抗体生产技术的成熟,广谱中和抗体的研发成本越来越低。此外,通过生物信息学方法对产生广谱中和抗体的相关患者进行转录组分析,也许能破解广谱中和抗体产生之谜。
许多新技术的出现为HIV治疗提供了新的思路和新的工具。如RNA荧光原位杂交(RNA fluorescence in situ hybridization,RNA-FISH)可在细胞水平结合蛋白检测mRNA,了解CD4+ T细胞与HIV博弈过程中哪些mRNA处于活跃状态,从而更加深刻地理解HIV感染过程和广谱中和抗体诱导过程[43]。近年来,一直非常引人注目的基因编辑技术CRISPR和肿瘤领域非常热门的CAR-T技术引起了HIV治疗领域的关注。有一项旨在清除体内病毒库的CRISDPR研究设计了能广泛识别HIV保守序列的CRISPR系统[44]。
目前采用单一手段治愈艾滋病存在极大的挑战,多种策略联合应用将成为主流。希望全球各国政府及疫苗研发企业能共同合作,增加艾滋病研究领域所需的经费投入与政策支持,以期在全球范围特别是在贫困地区更好地控制艾滋病疫情。
[1] |
Ahmed Y, Tian M, Gao Y. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies[J]. AIDS Res Ther, 2017, 14(1): 50.
[DOI]
|
[2] |
Deeks SG, Schweighardt B, Wrin T, Galovich J, Hoh R, Sinclair E, Hunt P, McCune JM, Martin JN, Petropoulos CJ, Hecht FM. Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on the ability of HIV to completely evade neutralizing antibody responses[J]. J Virol, 2006, 80(12): 6155-6164.
[DOI]
|
[3] |
Cohen J. Bound for glory[J]. Science, 2013, 341(6151): 1168-1171.
[DOI]
|
[4] |
Kulp DW, Steichen JM, Pauthner M, Hu X, Schiffner T, Liguori A, Cottrell CA, Havenar-Daughton C, Ozorowski G, Georgeson E, Kalyuzhniy O, Willis JR, Kubitz M, Adachi Y, Reiss SM, Shin M, de Val N, Ward AB, Crotty S, Burton DR, Schief WR. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding[J]. Nat Comm, 2017, 8(1): 1655.
[DOI]
|
[5] |
von Bredow B, Arias JF, Heyer LN, Moldt B, Le K, Robinson JE, Zolla-Pazner S, Burton DR, Evans DT. Comparison of antibody-dependent cell-mediated cytotoxicity and virus neutralization by HIV-1 Env-specific monoclonal antibodies[J]. J Virol, 2016, 90(13): 6127-6139.
[DOI]
|
[6] |
Torrents de la Peña A, Sanders RW. Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies[J]. Retrovirology, 2018, 15(1): 63.
[DOI]
|
[7] |
Ducloy C, Su B, Mayr L, Klingler J, Decoville T, Schmidt S, Laumond G, Salomé N, Bahram S, Moog C. HIV transmission from infected CD4+ T cells to allogenic T and dendritic cells is inhibited by broadly neutralizing antibodies[J]. AIDS, 2018, 32(10): 1239-1245.
[DOI]
|
[8] |
Kwong PD, Mascola JR. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies[J]. Immunity, 2012, 37(3): 412-425.
[DOI]
|
[9] |
Stephenson KE, Barouch DH. Broadly neutralizing antibodies for HIV eradication[J]. Curr HIV/AIDS Rep, 2016, 13(1): 31-37.
[DOI]
|
[10] |
Xu L, Pegu A, Rao E, Doria-Rose N, Beninga J, McKee K, Lord DM, Wei RR, Deng G, Louder M, Schmidt SD, Mankoff Z, Wu L, Asokan M, Beil C, Lange C, Leuschner WD, Kruip J, Sendak R, Kwon YD, Zhou T, Chen X, Bailer RT, Wang K, Choe M, Tartaglia LJ, Barouch DH, O'Dell S, Todd JP, Burton DR, Roederer M, Connors M, Koup RA, Kwong PD, Yang ZY, Mascola JR, Nabel GJ. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques[J]. Science, 2017, 358(6359): 85-90.
[DOI]
|
[11] |
Subbaraman H, Schanz M, Trkola A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy?[J]. Retrovirology, 2018, 15(1): 52.
[DOI]
|
[12] |
Markham A. Ibalizumab: first global approval[J]. Drugs, 2018, 78(7): 781-785.
[DOI]
|
[13] |
Bettiker RL, Koren DE, Jacobson JM. Ibalizumab[J]. Curr Opin HIV AIDS, 2018, 13(4): 354-358.
[DOI]
|
[14] |
Ferrari G, Haynes BF, Koenig S, Nordstrom JL, Margolis DM, Tomaras GD. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection[J]. Nat Rev Drug Discov, 2016, 15(12): 823-834.
[DOI]
|
[15] |
Burton DR, Pyati J, Koduri R, Sharp SJ, Thornton GB, Parren PW, Sawyer LS, Hendry RM, Dunlop N, Nara PL, Lamacchia M, Garratty E, Stiehm ER, BrysonYJ, Cao Y, Moore JP, Ho DD, Barbas III CF. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody[J]. Science, 1994, 266(5187): 1024-1027.
[DOI]
|
[16] |
Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. Structural definition of a conserved neutralization epitope on HIV-1 gp120[J]. Nature, 2007, 445(7129): 732-737.
[DOI]
|
[17] |
Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, Silacci C, Pinna D, Jarrossay D, Balla-Jhagjhoorsingh S, Willems B, Zekveld MJ, Dreja H, O'Sullivan E, Pade C, Orkin C, Jeffs SA, Montefiori DC, Davis D, Weissenhorn W, McKnight A, Heeney JL, Sallusto F, Sattentau QJ, Weiss RA, Lanzavecchia A. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals[J]. PLoS One, 2010, 5(1): e8805.
[DOI]
|
[18] |
Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, Longo NS, McKee K, O'Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1[J]. Science, 2010, 329(5993): 856-861.
[DOI]
|
[19] |
Saunders KO, Verkoczy LK, Jiang C, Zhang J, Parks R, Chen H, Housman M, Bouton-Verville H, Shen X, Trama AM, Scearce R, Sutherland L, Santra S, Newman A, Eaton A, Xu K, Georgiev IS, Joyce MG, Tomaras GD, Bonsignori M, Reed SG, Salazar A, Mascola JR, Moody MA, Cain DW, Centlivre M, Zurawski S, Zurawski G, Erickson HP, Kwong PD, Alam SM, Levy Y, Montefiori DC, Haynes BF. Vaccine induction of heterologous tier 2 HIV-1 neutralizing antibodies in animal models[J]. Cell Rep, 2017, 21(13): 3681-3690.
[DOI]
|
[20] |
Huang J, Kang BH, Ishida E, Zhou T, Griesman T, Sheng Z, Wu F, Doria-Rose NA, Zhang B, McKee K, O'Dell S, Chuang GY, Druz A, Georgiev IS, Schramm CA, Zheng A, Joyce MG, Asokan M, Ransier A, Darko S, Migueles SA, Bailer RT, Louder MK, Alam SM, Parks R, Kelsoe G, Von Holle T, Haynes BF, Douek DC, Hirsch V, Seaman MS, Shapiro L, Mascola JR, Kwong PD, Connors M. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth[J]. Immunity, 2016, 45(5): 1108-1121.
[DOI]
|
[21] |
Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, Dai K, Loesgen S, Louder MK, Staupe RP, Yang Y, Zhang B, Parks R, Eudailey J, Lloyd KE, Blinn J, Alam SM, Haynes BF, Amin MN, Wang LX, Burton DR, Koff WC, Nabel GJ, Mascola JR, Bewley CA, Kwong PD. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16[J]. Nat Struct Mol Biol, 2013, 20(7): 804-813.
[DOI]
|
[22] |
Yasmeen A, Ringe R, Derking R, Cupo A, Julien JP, Burton DR, Ward AB, Wilson IA, Sanders RW, Moore JP, Klasse PJ. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits[J]. Retrovirology, 2014, 11: 41.
[DOI]
|
[23] |
Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition[J]. Science, 2003, 300(5628): 2065-2071.
[DOI]
|
[24] |
Chun TW, Murray D, Justement JS, Blazkova J, Hallahan CW, Fankuchen O, Gittens K, Benko E, Kovacs C, Moir S, Fauci AS. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir[J]. Proc Natl Acad Sci USA, 2014, 111(36): 13151-13156.
[DOI]
|
[25] |
Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield[J]. Science, 2011, 334(6059): 1097-1103.
[DOI]
|
[26] |
Yang G, Holl TM, Liu Y, Li Y, Lu X, Nicely NI, Kepler TB, Alam SM, Liao HX, Cain DW, Spicer L, VandeBerg JL, Haynes BF, Kelsoe G. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies[J]. J Exp Med, 2013, 210(2): 241-256.
[DOI]
|
[27] |
Pegu A, Yang ZY, Boyington JC, Wu L, Ko SY, Schmidt SD, McKee K, Kong WP, Shi W, Chen X, Todd JP, Letvin NL, Huang J, Nason MC, Hoxie JA, Kwong PD, Connors M, Rao SS, Mascola JR, Nabel GJ. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor[J]. Sci Transl Med, 2014, 6(243): 243ra88.
[DOI]
|
[28] |
Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Moore JP, Stiegler G, Katinger H, Burton DR, Parren PW. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41[J]. J Virol, 2001, 75(22): 10892-10905.
[DOI]
|
[29] |
Bradley T, Peppa D, Pedroza-Pacheco I, Li D, Cain DW, Henao R, Venkat V, Hora B, Chen Y, Vandergrift NA, Overman RG, Edwards RW, Woods CW, Tomaras GD, Ferrari G, Ginsburg GS, Connors M, Cohen MS, Moody MA, Borrow P, Haynes BF. RAB11FIP5 expression and altered natural killer cell function are associated with induction of HIV broadly neutralizing antibody responses[J]. Cell, 2018, 175(2): 387-399.
[DOI]
|
[30] |
Kouyos RD, Rusert P, Kadelka C, Huber M, Marzel A, Ebner H, Schanz M, Liechti T, Friedrich N, Braun DL, Scherrer AU, Weber J, Uhr T, Baumann NS, Leemann C, Kuster H, Chave JP, Cavassini M, Bernasconi E, Hoffmann M, Calmy A, Battegay M, Rauch A, Yerly S, Aubert V, Klimkait T, Böni J, Metzner KJ, Günthard HF, Trkola A, Swiss HIV Cohort Study. Tracing HIV-1 strains that imprint broadly neutralizing antibody responses[J]. Nature, 2018, 561(7723): 406-410.
[DOI]
|
[31] |
Waters L, Smit E. HIV-1 superinfection[J]. Curr Opin Infect Dis, 2012, 25(1): 42-50.
[DOI]
|
[32] |
Cortez V, Wang B, Dingens A, Chen MM, Ronen K, Georgiev IS, McClelland RS, Overbaugh J. The broad neutralizing antibody responses after HIV-1 superinfection are not dominated by antibodies directed to epitopes common in single infection[J]. PLoS Pathog, 2015, 11(7): e1004973.
[DOI]
|
[33] |
Xu J, Ren L, Huang X, Qiu C, Liu Y, Liu Y, Shao Y. Sequential priming and boosting with heterologous HIV immunogens predominantly stimulated T cell immunity against conserved epitopes[J]. AIDS, 2006, 20(18): 2293-2303.
[DOI]
|
[34] |
Feng Y, McKee K, Tran K, O'Dell S, Schmidt SD, Phogat A, Forsell MN, Karlsson Hedestam GB, Mascola JR, Wyatt RT. Biochemically defined HIV-1 envelope glycoprotein variant immunogens display differential binding and neutralizing specificities to the CD4-binding site[J]. J Biol Chem, 2012, 287(8): 5673-5686.
[DOI]
|
[35] |
Mohan T, Berman Z, Kang SM, Wang BZ. Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies[J]. Sci Rep, 2018, 8(1): 7807.
[DOI]
|
[36] |
Patricia D'Souza M, Allen MA, Baumblatt JAG, Boggiano C, Crotty S, Grady C, Havenar-Daughton C, Heit A, Hu DJ, Kunwar N, McElrath MJ, Lymph Node Webinar Contributors. Innovative approaches to track lymph node germinal center responses to evaluate development of broadly neutralizing antibodies in human HIV vaccine trials[J]. Vaccine, 2018, 36(38): 5671-5677.
[DOI]
|
[37] |
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V, Akbari B. Evolution of phage display technology: from discovery to application[J]. J Drug Target, 2017, 25(3): 216-224.
[DOI]
|
[38] |
Steinitz M, Klein G, Koskimies S, Makel O. EB virus-induced B lymphocyte cell lines producing specific antibody[J]. Nature, 1977, 269(5627): 420-422.
[DOI]
|
[39] |
Roben P, Moore JP, Thali M, Sodroski J, Barbas CF 3rd, Burton DR. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1[J]. J Virol, 1994, 68(8): 4821-4828.
[DOI]
|
[40] |
McCoy LE, Burton DR. Identification and specificity of broadly neutralizing antibodies against HIV[J]. Immunol Rev, 2017, 275(1): 11-20.
[DOI]
|
[41] |
Williams LD, Ofek G, Schätzle S, McDaniel JR, Lu X, Nicely NI, Wu L, Lougheed CS, Bradley T, Louder MK, McKee K, Bailer RT, O'Dell S, Georgiev IS, Seaman MS, Parks RJ, Marshall DJ, Anasti K, Yang G, Nie X, Tumba NL, Wiehe K, Wagh K, Korber B, Kepler TB, Munir Alam S, Morris L, Kamanga G, Cohen MS, Bonsignori M, Xia SM, Montefiori DC, Kelsoe G, Gao F, Mascola JR, Moody MA, Saunders KO, Liao HX, Tomaras GD, Georgiou G, Haynes BF. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma[J]. Sci Immunol, 2017, 2(7).
[DOI]
|
[42] |
Wu X, Guo J, Niu M, An M, Liu L, Wang H, Jin X, Zhang Q, Lam KS, Wu T, Wang H, Wang Q, Du Y, Li J, Cheng L, Tang HY, Shang H, Zhang L, Zhou P, Chen Z. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice[J]. J Clin Invest, 2018, 128(6): 2239-2251.
[DOI]
|
[43] |
Baxter AE, Niessl J, Morou A, Kaufmann DE. RNA flow cytometric FISH for investigations into HIV immunology, vaccination and cure strategies[J]. AIDS Res Ther, 2017, 14(1): 40.
[DOI]
|
[44] |
Roychoudhury P, De Silva Feelixge H, Reeves D, Mayer BT, Stone D, Schiffer JT, Jerome KR. Viral diversity is an obligate consideration in CRISPR/Cas9 designs for targeting the HIV reservoir[J]. BMC Biol, 2018, 16(1): 75.
[DOI]
|