文章快速检索     高级检索
  微生物与感染  2021, Vol. 16 Issue (3): 221-226      DOI: 10.3969/j.issn.1673-6184.2021.03.010
0
Contents            PDF            Abstract             Full text             Fig/Tab
人类免疫缺陷病毒解剖学病毒储存库与检测方法的研究进展
赖菁贞 1,2,3 , 张洪 1,2 , 梁浩 1,2 , 宁传艺 1,4     
1. 广西艾滋病防治研究重点实验室,广西壮族自治区 南宁 530021;
2. 广西医科大学生命科学研究院,广西壮族自治区 南宁 530021;
3. 广西医科大学公共卫生学院,广西壮族自治区 南宁 530021;
4. 广西医科大学护理学院,广西壮族自治区 南宁 530021
摘要:由于人类免疫缺陷病毒(human immunodeficiency virus, HIV)储存库的存在,获得性免疫缺陷综合征(acquired immunodeficiency syndrome,AIDS)患者即便接受高效抗反转录病毒治疗也无法完全清除体内的潜伏病毒。本文就HIV在人体内可能存在的解剖学储存库、病毒储存库及检测方法进行综述,以增进参与AIDS防治的工作人员对HIV储存库在人体内研究进展的了解。
关键词获得性免疫缺陷综合征    人类免疫缺陷病毒    储存库    检测    
Human immunodeficiency virus anatomy reservoir and detection methods
LAI Jingzhen 1,2,3 , ZHANG Hong 1,2 , LIANG Hao 1,2 , NING Chuanyi 1,4     
1. Guangxi Key Laboratory of AIDS Prevention and Treatment, Nanning 530021, Guangxi Zhuang Autonomous Region, China;
2. Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China;
3. School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China;
4. Nursing School, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
Abstract: The existence of human Immunodeficiency virus (HIV) reservoir makes it impossible for acquired immunodeficiency syndrome (AIDS) patients to eliminate HIV from their bodies even after receiving highly effective antiretroviral therapy. In order to clarify the existence of HIV reservoir in vivo, we reviewed literature on the anatomy of HIV reservoirs and in-house detection methods.
Keywords: Acquired immunodeficiency syndrome    Human immunodeficiency virus    Reservoir    Detection    

自20世纪90年代提出高效抗反转录病毒治疗(highly active anti-retroviral therapy,HAART),人类免疫缺陷病毒(human immunodeficiency virus, HIV)感染由一种高致死性疾病转变为可控的慢性感染性疾病。目前只要HIV感染者坚持服用HAART药物,其体内的病毒复制基本可被抑制,这意味着病毒对感染者免疫功能的破坏可暂时被终止,感染者免疫力能够逐步恢复[1-2]。维持一定水平血药浓度的抗病毒药物虽能长期抑制病毒复制,但HAART不能彻底清除体内病毒,最主要原因是HIV感染者体内病毒潜伏感染于细胞中形成的病毒储存库,这些潜伏感染的病毒能够躲避人体免疫系统的识别[3-4]。鉴于此,本文对HIV解剖学储存库及其检测方法进行综述,期望为获得性免疫缺陷综合征(acquired immunodeficiency syndrome,AIDS)防治工作提供资料。

1 HIV储存库

潜伏病毒是指整合在宿主DNA上的前病毒,它们平时不产生病毒,但是在合适的信号刺激下能够释放病毒颗粒。潜伏感染细胞是潜伏病毒的载体细胞,是病毒储存库的最小实体,这个定义仅限于静息感染细胞[5]。尽管HAART在抑制HIV复制方面非常有效,但在治疗期间,病毒仍然能潜伏于作为宿主的静息CD4+ T细胞中,一旦停止HAART,病毒复制便会迅速反弹。多个研究表明,在长期接受HAART(10~30个月)的HIV感染者体内仍然存在能够产生病毒的HIV储存库,即使其血浆病毒载量已经低于检测阈值[6-8]

HIV感染者体内的病毒储存库在感染早期即可形成,主要以两种形式存在:一种是未整合进入人类基因组的HIV DNA,主要是游离于细胞核内的1-长末端重复序列(long terminal repeat,LTR)环和2-LTR环[9-10],能进行稳定的低水平复制,然而其尚未整合进入宿主DNA,故存在的半衰期仅为数周,无法形成长期存在的储存库;另一种是完全整合进入宿主基因组的HIV前病毒,其有较高的稳定性和隐蔽性,能够长期存在于宿主静息细胞DNA内,是清除HIV感染的主要障碍,也是病毒储存库形成的主要原因。Brodin等[11]使用队列研究设计和深度测序的方法,选取10例HIV感染者,在其确诊后5年提取血浆病毒RNA(尚未开始抗病毒治疗),并在其抗病毒治疗成功抑制HIV至少2年后从其外周血单个核细胞(peripheral blood mononuclear cells, PBMCs)中分离出前病毒DNA,对其中的p17 gag序列进行纵向检测和比较,经系统进化分析后发现,抗病毒治疗后的DNA序列中约60%与抗病毒治疗开始前血浆中的RNA变异是相似的。Abrahams等[12]也比较了9名接受治疗的HIV感染者外周血CD4+ T细胞中可复制的活性病毒序列和治疗前血液中循环的病毒序列,结果发现,从系统进化树上来看,治疗后潜伏期诱发的特定病毒与治疗开始前的病毒在遗传上大约有71%的序列是相似的。这些研究说明病毒储存库在患者体内相当稳定,且不易被清除。

2 HIV解剖学储存库

HIV储存库不仅指某些特定的细胞类型,还包括具体组织、器官等生理解剖学储存库,例如中枢神经系统、肺、生殖系统、消化道相关淋巴组织、肾等[13-14]。解剖学病毒储存库的存在导致这些组织、器官由于持续存在低水平病毒复制而产生炎症或者容易诱发机会性感染。

2.1 中枢神经系统(central nervous system, CNS)

HIV在CNS中的感染机制仍未明确。HIV可通过感染单核细胞或CD4+T细胞后随血液迁移至CNS,或因为炎症前细胞因子和病毒蛋白的分泌改变血-脑屏障上皮细胞的通透性,促进HIV进入CNS,或利用受感染的上皮细胞,通过转胞吞作用到达另一侧,或利用反应性星形胶质细胞诱导上皮细胞凋亡,通过释放病毒蛋白来改变血-脑屏障的通透性[15]。最终,HIV可在CNS内的血管旁巨噬细胞、小胶质细胞和星状细胞形成潜伏感染,构成CNS病毒库[16-17]。其中,小胶质细胞是存活时间较长的细胞,可存活数年,可致其成为主要的CNS病毒潜伏库[17-18]。同时,相对于其他解剖学储存库,血-脑屏障的存在使得抗病毒药物很难进入CNS,从而无法清除CNS中的游离HIV。对病毒准种的遗传分析揭示了HIV在CNS中存在区室化复制特点[19-21]

2.2 肺

肺和支气管是非常重要的HIV潜伏病毒库[22-23]。肺也是AIDS患者发生机会性感染的重要器官之一。除了在大部分患者肺泡巨噬细胞中可以检测到HIV以外[23],感染动力学表明,病毒释放的早期峰值随着可检测到的HIV Gag蛋白和HIV RNA的减少而降低,并达到低水平稳定状态,从而形成潜伏病毒库[23]。早期研究结果表明,AIDS患者支气管肺泡灌洗液细胞中的HIV前病毒DNA水平超出外周血白细胞的7.6倍[24]。Brenchley等[25]研究显示,被HIV感染的支气管肺泡灌洗细胞比例与被感染的血细胞比例相近。Costiniuk等[26]对接受HAART且体内病毒复制被抑制的患者支气管肺泡灌洗细胞进行检测,发现其中的前病毒DNA较血液中的更加富集。对感染猿猴免疫缺陷病毒(simian immunodeficiency virus, SIV;HIV的猿类同系病毒)的恒河猴的研究表明,肺和肠道内的病毒血症水平最高,仅次于淋巴结,在HAART有效抑制血液病毒期间也是如此[27]。对HIV准种的分析也提示肺中嗜巨噬细胞HIV-1变异存在区室化[20]

2.3 生殖系统

睾丸也被认为是接受抗病毒治疗患者HIV解剖学储存库。早期研究报道,可从接受HAART患者的精子中分离出有复制能力的HIV-1,尽管其血浆中的HIV DNA已无法检测到,这提示男性生殖道可能是HIV的病毒储存库之一[28]。近年来,Jenabian等[29]研究报道,从抗病毒抑制的所有6名研究对象的至少一个睾丸中检测到HIV总DNA,且其中5名研究对象能检测到整合的HIV DNA。此外,与PBMCs相比,HIV感染和未感染研究对象的睾丸组织中的效应记忆T细胞增加,且睾丸中T细胞的趋化因子受体5(chemokine receptor 5,CCR5)表达明显增加。有研究利用基因进化分析研究睾丸组织和血液来源的HIV的多样性和区室化特征。随着HIV nef完整序列的进化,60%研究对象的血液与睾丸组织中的HIV呈现明显的区室化,提示睾丸可能是HIV的解剖学病毒库[30]

有研究对异性性传播感染HIV-1 7个月内的72名妇女宫颈黏膜擦拭采样,同时采集外周血,利用二代测序技术比较宫颈和外周血样本中的HIV-1多样性,发现生殖道内获得的HIV-1具有更高的多样性[31]。Cantero-Pérez等[32]的研究发现,接受抗反转录病毒治疗(anti-retroviral therapy,ART)的HIV阳性女性宫颈组织中含有高水平的病毒DNA和RNA。以上研究提示,宫颈很可能也是重要的解剖学病毒库。

2.4 其他解剖学病毒库

除上述3个研究较多的解剖学储存库以外,还有很多其他的HIV解剖学病毒库,如淋巴结、肾脏、眼等。长期ART过程中外周血和淋巴结中持续存在的被HIV-1感染的细胞混合均匀,淋巴结中的病毒不存在区室化现象,且淋巴结中的HIV-1潜伏库持续存在是因为HAART之前被感染的细胞持续增殖,而非HAART期间病毒持续复制[33]。一项关于外周滤泡辅助T(peripheral follicular helper T, pTFH)细胞的研究表明,大量累积于淋巴结的pTFH细胞是非常重要的HIV库,其中潜伏感染X4-嗜性HIV-1的患者罹患机会性感染的风险更大[34]。此外,Canaud等[35]的研究揭示HIV-1可感染移植肾,进而在肾脏形成潜伏库;HIV还可以从泪液、结膜上皮细胞、角膜、视网膜等眼部重要分泌物/组织中分离出来[36]

3 HIV储存库的检测方法 3.1 病毒生长实验(viral outgrowth assays, VOA)

定量病毒生长实验(quantitative VOA, QVOA)可以检测静息CD4+ T细胞在受到刺激时释放活性病毒的细胞数量,被认为是确定接受抗病毒治疗的HIV感染者体内病毒储存库大小的金标准[37]。在实际应用中,研究人员发现,QVOA不能检测出有缺陷的前病毒,常低估具有复制能力的病毒储存库的大小[38],所以研究人员进一步优化QVOA并提出定性定量VOA(qualitative QVOA, Q2VOA)[39]和多轮刺激VOA(multiple stimulation VOA, MS-VOA)[40]。Q2VOA在QVOA的基础上对检测到病毒颗粒的培养孔内的上清液进行env区测序及中和实验,在对具有复制能力的病毒进行定量检测的同时分析其遗传和生物多样性[39]。MS-VOA增加了对细胞的刺激次数,使CD4+ T细胞在经过多轮植物血凝素(phytohemagglutinin, PHA)刺激后复制、释放出更多病毒颗粒,可用于评估先前在T细胞激活反应中增殖而不产生感染性病毒的细胞是否可以通过额外刺激释放病毒,从而更加准确地估计储存库的大小[40]。然而VOA所需时间较长,且需大量血液(120~180 mL)或其他组织细胞[37-38],并须在生物安全三级实验室中进行[41]

3.2 TZA(TZM-bl based assay)

TZA是基于TZM-bl细胞对血液中的HIV储存库进行定量检测的实验方法[42]。使用强病毒潜伏激活剂激活从外周血分离的静息CD4+T细胞,经洗涤、计数后,将这些激活的细胞与TZM-bl报告细胞共培养,通过检测实验组和阴性对照组中β -半乳糖苷酶的表达量,对具有复制能力的HIV-1进行定量。TZA可用于估计可被诱导的潜伏病毒部分[42-43],相比于VOA,其基于细胞系的检测体系及对患者外周血需求量小,可以实现高通量的储存库检测,并用于儿童及组织样本中的储存库检测[44],但是TZA必须设立阴性对照组才能对病毒储存库进行估算。

3.3 微滴数字聚合酶链反应(droplet digital polymerase chain reaction, ddPCR)

ddPCR是近年来新兴的一种数字PCR技术,通过将反应体系无限稀释至1 000万份,其中每个微滴不含待检靶病毒分子或只含一个待检靶病毒分子[45]。经PCR扩增后,对每个微滴逐个进行检测,有荧光信号的微滴判为1,没有荧光信号的微滴判为0,根据泊松分布原理及阳性微滴的比例即可计算出靶病毒分子的起始拷贝数或浓度。通过ddPCR对HIV-1总DNA进行定量是临床研究中常用的一种评估病毒储存库的方法[46],可以对多种生物样本中的HIV-1 DNA进行检测[13, 47-48],可检测到含量极低的病毒序列[45],且无需标准品即可检测出靶病毒分子的起始拷贝数或浓度[45]。但是,由于绝大多数可检测到的HIV-1基因组不能进行复制,因此用HIV-1 DNA定量会过高估计病毒储存库的大小[38]

3.4 Tat/rev诱导有限稀释试验(Tat/rev induced limiting dilution assay, TILDA)

TILDA是一种基于PCR的实验方法,可以估计产生Tat/rev多重剪接RNA(multiply spliced RNA, msRNA)的HIV-1感染CD4+ T细胞数[49]。该试验将分子方法与限制稀释试验相结合,提高检测的敏感性,能够从少量血液样本中准确定量检测临床相关病毒储存库大小。但是,尽管所有释放病毒颗粒的细胞都在产生tat/rev msRNA,但反过来未必正确,所以TILDA可能过度估计病毒储存库的大小[49]。此外,TILDA依赖于HIV基因组一个高度可变区域的扩增,实验中使用的引物和探针可能因不能识别所有的病毒准种而不能准确估计病毒储存库大小[49]

4 结语

HIV储存库的存在导致HIV感染至今无法被治愈,HIV感染的持续存在导致宿主机体特定解剖学储存库易发生多种机会性感染,而HIV储存库与机会性感染之间的关系尚不明确,因此有必要开展HIV储存库与机会性感染相互作用的机制研究。此外,关于HIV储存库检测方法缺乏统一的检测金标准,存在严重高估或者低估病毒储存库的争论。因此,有必要开发更加准确、简便、快速的HIV储存库检测技术,以进一步指导临床上AIDS的治疗及预后评估。

参考文献
[1]
Patterson S, Cescon A, Samji H, Chan K, Zhang W, Raboud J, Burchell AN, Cooper C, Klein MB, Rourke SB, Loutfy MR, Machouf N, Montaner JS, Tsoukas C, Hogg RS, CANOC Collaboration. Life expectancy of HIV-positive individuals on combination antiretroviral therapy in Canada[J]. BMC Infect Dis, 2015, 15: 274. [DOI]
[2]
Ahlenstiel CL, Suzuki K, Marks K, Symonds GP, Kelleher AD. Controlling HIV-1: non-coding RNA gene therapy approaches to a functional cure[J]. Front Immunol, 2015, 6: 474. [DOI]
[3]
Ruelas DS, Greene WC. An integrated overview of HIV-1 latency[J]. Cell, 2013, 155(3): 519-529. [DOI]
[4]
Le T, Farrar J, Shikuma C. Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication[J]. AIDS, 2011, 25(6): 871-872. [DOI]
[5]
Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection[J]. Annu Rev Med, 2002, 53: 557-593. [DOI]
[6]
Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy[J]. Science, 1997, 278(5341): 1295-1300. [DOI]
[7]
Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia[J]. Science, 1997, 278(5341): 1291-1295. [DOI]
[8]
Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy[J]. Proc Natl Acad Sci U S A, 1997, 94(24): 13193-13197. [DOI]
[9]
Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection[J]. EMBO J, 2001, 20(12): 3272-3281. [DOI]
[10]
Farnet CM, Haseltine WA. Circularization of human immunodeficiency virus type 1 DNA in vitro[J]. J Virol, 1991, 65(12): 6942-6952. [DOI]
[11]
Brodin J, Zanini F, Thebo L, Lanz C, Bratt G, Neher RA, Albert J. Establishment and stability of the latent HIV-1 DNA reservoir[J]. Elife, 2016, 5: e18889. [DOI]
[12]
Abrahams MR, Joseph SB, Garrett N, Tyers L, Moeser M, Archin N, Council OD, Matten D, Zhou S, Doolabh D, Anthony C, Goonetilleke N, Karim SA, Margolis DM, Pond SK, Williamson C, Swanstrom R. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation[J]. Sci Transl Med, 2019, 11(513): eaaw5589. [DOI]
[13]
Avettand-Fenoel V, Hocqueloux L, Ghosn J, Cheret A, Frange P, Melard A, Viard JP, Rouzioux C. Total HIV-1 DNA, a marker of viral reservoir dynamics with clinical implications[J]. Clin Microbiol Rev, 2016, 29(4): 859-880. [DOI]
[14]
Bruner KM, Hosmane NN, Siliciano RF. Towards an HIV-1 cure: measuring the latent reservoir[J]. Trends Microbiol, 2015, 23(4): 192-203. [DOI]
[15]
Rojas-Celis V, Valiente-Echeverria F, Soto-Rifo R, Toro-Ascuy D. New challenges of HIV-1 infection: how HIV-1 attacks and resides in the central nervous system[J]. Cells, 2019, 8(10): 1245. [DOI]
[16]
康文, 孙永涛. HIV脑内存储库——功能性治愈的另一障碍[J]. 传染病信息, 2016, 29(6): 324-328. [CNKI]
[17]
Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS[J]. J Neurovirol, 2015, 21(3): 276-289. [DOI]
[18]
Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types[J]. PLoS Pathog, 2011, 7(10): e1002286. [DOI]
[19]
Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM. Genetic differences between blood-and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences[J]. J Virol, 1994, 68(11): 7467-7481. [DOI]
[20]
van't Wout AB, Ran LJ, Kuiken CL, Kootstra NA, Pals ST, Schuitemaker H. Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy[J]. J Virol, 1998, 72(1): 488-496. [DOI]
[21]
Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia[J]. PLoS Pathog, 2009, 5(4): e1000395. [DOI]
[22]
White NC, Agostini C, Israel-Biet D, Semenzato G, Clarke JR. The growth and the control of human immunodeficiency virus in the lung: implications for highly active antiretroviral therapy[J]. Eur J Clin Invest, 1999, 29(11): 964-972. [DOI]
[23]
Chinnapaiyan S, Parira T, Dutta R, Agudelo M, Morris A, Nair M, Unwalla HJ. HIV infects bronchial epithelium and suppresses components of the mucociliary clearance apparatus[J]. PloS One, 2017, 12(1): e0169161. [DOI]
[24]
Clarke JR, Gates AJ, Coker RJ, Douglass JA, Williamson JD, Mitchell DM. HIV-1 proviral DNA copy number in peripheral blood leucocytes and bronchoalveolar lavage cells of AIDS patients[J]. Clin Exp Immunol, 1994, 96(2): 182-186. [DOI]
[25]
Brenchley JM, Knox KS, Asher AI, Price DA, Kohli LM, Gostick E, Hill BJ, Hage CA, Brahmi Z, Khoruts A, Twigg HL, 3rd, Schacker TW, Douek DC. High frequencies of polyfunctional HIV-specific T cells are associated with preservation of mucosal CD4 T cells in bronchoalveolar lavage[J]. Mucosal Immunol, 2008, 1(1): 49-58. [DOI]
[26]
Costiniuk CT, Salahuddin S, Farnos O, Olivenstein R, Pagliuzza A, Orlova M, Schurr E, De Castro C, Bourbeau J, Routy JP, Ancuta P, Chomont N, Jenabian MA. HIV persistence in mucosal CD4+ T cells within the lungs of adults receiving long-term suppressive antiretroviral therapy[J]. AIDS, 2018, 32(16): 2279-2289. [DOI]
[27]
Horiike M, Iwami S, Kodama M, Sato A, Watanabe Y, Yasui M, Ishida Y, Kobayashi T, Miura T, Igarashi T. Lymph nodes harbor viral reservoirs that cause rebound of plasma viremia in SIV-infected macaques upon cessation of combined antiretroviral therapy[J]. Virology, 2012, 423(2): 107-118. [DOI]
[28]
Zhang H, Dornadula G, Beumont M, Livornese L Jr, Van Uitert B, Henning K, Pomerantz RJ. Human immunodeficiency virus type 1 in the semen of men receiving highly active antiretroviral therapy[J]. N Engl J Med, 1998, 339(25): 1803-1809. [DOI]
[29]
Jenabian MA, Costiniuk CT, Mehraj V, Ghazawi FM, Fromentin R, Brousseau J, Brassard P, Bélanger M, Ancuta P, Bendayan R, Chomont N, Routy JP, Orchid Study Group. Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults[J]. AIDS, 2016, 30(18): 2777-2786. [DOI]
[30]
Miller RL, Ponte R, Jones BR, Kinloch NN, Omondi FH, Jenabian MA, Dupuy FP, Fromentin R, Brassard P, Mehraj V, Chomont N, Poon AFY, Joy JB, Brumme ZL, Routy JP, ORCHID Study Group. HIV diversity and genetic compartmentalization in blood and testes during suppressive antiretroviral therapy[J]. J Virol, 2019, 93(17): e00755-19. [DOI]
[31]
Klein K, Nickel G, Nankya I, Kyeyune F, Demers K, Ndashimye E, Kwok C, Chen PL, Rwambuya S, Poon A, Munjoma M, Chipato T, Byamugisha J, Mugyenyi P, Salata RA, Morrison CS, Arts EJ. Higher sequence diversity in the vaginal tract than in blood at early HIV-1 infection[J]. PLoS Pathog, 2018, 14(1): e1006754. [DOI]
[32]
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa[J]. Nat Commun, 2019, 10(1): 4739. [DOI]
[33]
McManus WR, Bale MJ, Spindler J, Wiegand A, Musick A, Patro SC, Sobolewski MD, Musick VK, Anderson EM, Cyktor JC, Halvas EK, Shao W, Wells D, Wu X, Keele BF, Milush JM, Hoh R, Mellors JW, Hughes SH, Deeks SG, Coffin JM, Kearney MF. HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy[J]. J Clin Invest, 2019, 129(11): 4629-4642. [DOI]
[34]
Yu F, Li Q, Chen X, Liu J, Li L, Li B, Liu B, Zhang J, Zhang X, Liu Z, Luo H, Tang XP, Cai W, Zhang H, Deng K. X4-tropic latent HIV-1 is enriched in peripheral follicular helper T cells and is correlated with disease progression[J]. J Virol, 2019, 94(2): e01219-19. [DOI]
[35]
Canaud G, Dejucq-Rainsford N, Avettand-Fenoël V, Viard JP, Anglicheau D, Bienaimé F, Muorah M, Galmiche L, Gribouval O, Noël LH, Satie AP, Martinez F, Sberro-Soussan R, Scemla A, Gubler MC, Friedlander G, Antignac C, Timsit MO, Onetti Muda A, Terzi F, Rouzioux C, Legendre C. The kidney as a reservoir for HIV-1 after renal transplantation[J]. J Am Soc Nephrol, 2014, 25(2): 407-419. [DOI]
[36]
Pomerantz RJ, Kuritzkes DR, de la Monte SM, Rota TR, Baker AS, Albert D, Bor DH, Feldman EL, Schooley RT, Hirsch MS. Infection of the retina by human immunodeficiency virus type I[J]. N Engl J Med, 1987, 317(26): 1643-1647. [DOI]
[37]
Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES, Bosch RJ, Lai J, Chioma S, Emad F, Abdel-Mohsen M, Hoh R, Hecht F, Hunt P, Somsouk M, Wong J, Johnston R, Siliciano RF, Richman DD, O'Doherty U, Palmer S, Deeks SG, Siliciano JD. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies[J]. PLoS Pathog, 2013, 9(2): e1003174. [DOI]
[38]
Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, Lai J, Blankson JN, Siliciano JD, Siliciano RF. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure[J]. Cell, 2013, 155(3): 540-551. [DOI]
[39]
Lorenzi JC, Cohen YZ, Cohn LB, Kreider EF, Barton JP, Learn GH, Oliveira T, Lavine CL, Horwitz JA, Settler A, Jankovic M, Seaman MS, Chakraborty AK, Hahn BH, Caskey M, Nussenzweig MC. Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA[J]. Proc Natl Acad Sci U S A, 2016, 113(49): E7908-E7916. [DOI]
[40]
Hosmane NN, Kwon KJ, Bruner KM, Capoferri AA, Beg S, Rosenbloom DI, Keele BF, Ho YC, Siliciano JD, Siliciano RF. Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: potential role in latent reservoir dynamics[J]. J Exp Med, 2017, 214(4): 959-972. [DOI]
[41]
Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S, Blankson JN, Siliciano JD, Siliciano RF. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay[J]. PLoS Pathog, 2013, 9(5): e1003398. [DOI]
[42]
Sanyal A, Mailliard RB, Rinaldo CR, Ratner D, Ding M, Chen Y, Zerbato JM, Giacobbi NS, Venkatachari NJ, Patterson BK, Chargin A, Sluis-Cremer N, Gupta P. Novel assay reveals a large, inducible, replication-competent HIV-1 reservoir in resting CD4+ T cells[J]. Nat Med, 2017, 23(7): 885-889. [DOI]
[43]
Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr, Coffin JM, Mellors JW. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy[J]. Proc Natl Acad Sci U S A, 2014, 111(19): 7078-7083. [DOI]
[44]
Sanyal A, Rangachar VS, Gupta P. TZA, a sensitive reporter cell-based assay to accurately and rapidly quantify inducible, replication-competent latent HIV-1 from resting CD4+ T cells[J]. Bio Protoc, 2019, 9(10): e3232. [DOI]
[45]
Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD. Highly precise measurement of HIV DNA by droplet digital PCR[J]. PloS One, 2013, 8(4): e55943. [DOI]
[46]
Alidjinou EK, Bocket L, Hober D. Quantification of viral DNA during HIV-1 infection: a review of relevant clinical uses and laboratory methods[J]. Pathol Biol (Paris), 2015, 63(1): 53-59. [DOI]
[47]
Williams JP, Hurst J, Stöhr W, Robinson N, Brown H, Fisher M, Kinloch S, Cooper D, Schechter M, Tambussi G, Fidler S, Carrington M, Babiker A, Weber J, Koelsch KK, Kelleher AD, Phillips RE, Frater J, SPARTACTrial Investigators. HIV-1 DNA predicts disease progression and post-treatment virological control[J]. Elife, 2014, 3: e03821. [DOI]
[48]
Yerly S, Günthard HF, Fagard C, Joos B, Perneger TV, Hirschel B, Perrin L, Swiss HIV Cohort Study. Proviral HIV-DNA predicts viral rebound and viral setpoint after structured treatment interruptions[J]. AIDS, 2004, 18(14): 1951-1953. [DOI]
[49]
Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG, Strain MC, Richman DD, O'Doherty U, Palmer S, Hecht FM, Hoh R, Barnard RJ, Miller MD, Hazuda DJ, Deeks SG, Sékaly RP, Chomont N. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals[J]. EBioMedicine, 2015, 2(8): 874-883. [DOI]

文章信息

赖菁贞, 张洪, 梁浩, 宁传艺
LAI Jingzhen, ZHANG Hong, LIANG Hao, NING Chuanyi
人类免疫缺陷病毒解剖学病毒储存库与检测方法的研究进展
Human immunodeficiency virus anatomy reservoir and detection methods
微生物与感染, 2021, 16(3): 221-226.
Journal of Microbes and Infections, 2021, 16(3): 221-226.
通信作者
梁浩
E-mail:lianghao@gxmu.edu.cn;
宁传艺
E-mail:ningchuanyi@126.com
基金项目
国家自然科学基金(81803295,81760602),广西医科大学青年科学基金(GXMUYSF201827)

工作空间