丙型肝炎病毒(hepatitis C virus, HCV)属于黄病毒科,其基因组为单股正链线性RNA[1]。人体被HCV感染后可罹患慢性肝炎和肝硬化,最终发展成肝细胞肝癌,甚至死亡[2]。目前的研究认为,HCV编码的蛋白前体经宿主细胞及病毒自身的蛋白酶切割后,产生结构蛋白和非结构蛋白,其中非结构蛋白主要参与病毒翻译复制过程[3]。支持HCV高水平复制的细胞株只有Huh 7.5,它是由α-干扰素(IFN-α)以100 IU/ml的浓度处理HCV复制子细胞后获得。研究人员发现该HCV cured细胞支持HCV高水平复制,但并非所有HCV cured细胞株皆有对病毒易感的新特征[4]。虽然对HCV的探索已有突破性进展,但病毒翻译复制等关键生活周期环节并未彻底研究清楚。细胞模型的缺乏制约了对HCV生活周期进行深入研究,因此构建支持病毒高水平复制的细胞模型将为深入开展HCV基础性科学研究提供有力的工具。
1 材料和方法 1.1 材料肝癌细胞系Huh 7为本室保存[5]。肝癌细胞系Huh 7.5和HCV全长基因组质粒Jc1G为美国洛克菲勒大学Charles Rice教授馈赠[6]。HCV亚基因组sg-Jc1为本室人员在Jc1G基础上构建[5]。试剂:DMEM(Dulbecco’s modified eagle medium)培养基(美国Corning Cellgro公司, 10-013-CVa),胎牛血清(以色列Biological Industries公司, 04-001-1ACS),杀稻瘟菌素(美国Invitrogen公司,R21001),体外转录试剂盒(美国Invitrogen公司,AM1334),海肾荧光素酶检测试剂盒(美国Promega公司, E2820),IFN-γ(美国Proteintech公司, HZ-1301),IFN-α(美国PBLassay science公司, 11200-2),ECL化学发光试剂盒(美国PerkinElmer公司, NEL103E001EA),TRIzolTM Reagent (美国Invitrogen公司, 15596018),反转录试剂盒(日本Takara公司,DRR047A),荧光定量PCR试剂盒(日本Takara公司,DRR041A)。实验中所用抗体及来源如下:NS3抗体(美国Virogen公司; 217-A),HRP羊抗鼠二抗(美国Santa Cruz公司; sc-2005),β-actin抗体(美国Sigma公司; A1978),MDA5抗体(美国CST公司; 5321S),RIG-I抗体(美国Enzo Life Sciences公司; Alme1),MAVS抗体(美国Santa Cruz公司; sc-166583)。
1.2 方法 1.2.1 HCV复制子细胞株的建立将HCV亚基因组sg-Jc1酶切线性化后体外转录的RNA电转入Huh 7细胞,3 d后换含有5 μg/mL的杀稻瘟菌素(blasticidin)培养液置5% CO2、37 ℃培养。此后每隔2 d换液继续培养至细胞单克隆出现。取5~6个克隆,分别种于96孔板中继续置37 ℃培养,培养液中blasticidin的浓度调节为0.5 μg/mL。待细胞在板上长满后,转至更大孔径培养板中, 长满后再转至细胞培养瓶中继续置5% CO2、37 ℃培养,传代扩增细胞并冻存于液氮罐。
1.2.2 HCV cured细胞株的建立将HCV亚基因组复制子细胞株以5×104细胞/mL铺于T25细胞培养瓶,置5% CO2、37 ℃培养过夜。次日更换含有1 000 IU/瓶IFN-γ的新鲜培养基,每隔2 d换液1次,待培养瓶内细胞长满后进行传代,培养3周。3周后撤去IFN,继续培养细胞1周后,取细胞样本检测病毒RNA,阴性细胞进行传代扩增并冻存于液氮罐。
1.2.3 病毒感染将细胞以5×104孔铺板于48孔板,待细胞汇合度为30%~40%时加入病毒Jc1-G[感染复数(multiplicity of infection, MOI)为0.1]。感染后6 h用磷酸盐缓冲液(phosphate buffered saline, PBS)洗3遍,更换新鲜培养基,48 h后收集细胞上清液和细胞。
1.2.4 荧光素酶活性检测开启荧光检测仪GloMax® 20/20 Luminometer(美国Promega公司),将机器参数设置为Read 10 s; delay 2 s。取上清液10 μL,加入10 μL 2×passive lysis buffer混匀后加入50 μL 1× renilla luciferase substrate,吹吸5次后插入仪器样品槽读取荧光数值。
1.2.5 蛋白质印迹检测取细胞蛋白样品进行丙烯酰胺凝胶电泳(10%分离胶),电转印至硝酸纤维素膜上,用含有5%脱脂奶粉和0.05%吐温的PBS置室温封闭1 h,分别加NS3抗体和β-actin抗体置4 ℃孵育过夜,次日加HRP羊抗鼠二抗置室温孵育2 h后,用ECL化学发光检测。
1.2.6 荧光定量PCRTRIzol裂解细胞后加入氯仿混匀,12 800 g离心15 min,取上清液加入等量的异丙醇(isopropyl alcohol),温和地上下颠倒数次,12 800 g离心15 min。用预冷的75%乙醇洗涤沉淀物后加入焦碳酸二乙酯(DEPC)水溶解。取1 μg RNA按照反转录试剂盒试剂盒操作步骤进行反转录。取反转录产物参照荧光定量PCR试剂盒试剂盒说明书进行荧光定量PCR。定量引物见表 1。
Primer | Sequence (5′-3′) | Use |
HCV | CCCTGTGAGGAACTACTGTCTTCACGC | The forward primer for HCV specific 5UTR |
HCV | GCTCATGGTGCACGGTCTACGAGA | The reverse primer for HCV specific 5UTR |
GAPDH | GGTATCGTGGAAGGACTCATGA | The forward primer for GAPDH specific gene |
GAPDH | ATGCCAGTGGCTTCCCGTTCAGC | The reverse primer for GAPDH specific gene |
MDA5 | CGTATAGGTGTTGGCTCTATGC | The forward primer for MDA5 specific gene |
MDA5 | TGGGCAACTTCCATTTGGTAAG | The reverse primer for MDA5 specific gene |
RIG-I | CCTACCTACATCCTGAGCTACAT | The forward primer for RIG-I specific gene |
RIG-I | TCTAGGGCATCCAAAAAGCCA | The reverse primer for RIG-I specific gene |
MAVS | ATAAGTCCGAGGGCACCTTT | The forward primer for MAVS specific gene |
MAVS | GTGACTACCAGCACCCCTGT | The reverse primer for MAVS specific gene |
MX1 | CCACTGGACTGACGACTTGA | The forward primer for MX1 specific gene |
MX1 | GAGGGCTGAAAATCCCTTTC | The reverse primer for MX1 specific gene |
MX2 | CACCGAGCTAGAGCTTCAGGA | The forward primer for MX2 specific gene |
MX2 | CCGGGAAGGTCAATGATGGT | The reverse primer for MX2 specific gene |
ISG56 | TAGCCAACATGTCCTCACAGAC | The forward primer for ISG56 specific gene |
ISG56 | TCTTCTACCACTGGTTTCATGC | The reverse primer for ISG56 specific gene |
OAS1 | AAGGCTGGAATTTCATTCTC | The forward primer for OAS1 specific gene |
OAS1 | CATTTTCAGGTGGGACTCT | The reverse primer for OAS1 specific gene |
OAS2 | AGGTGGCTCCTATGGACGG | The forward primer for OAS2 specific gene |
OAS2 | TTTATCGAGGATGTCACGTTGG | The reverse primer for OAS2 specific gene |
Viperin | CCTGCTTGGTGCCTGAAT | The forward primer for viperin specific gene |
Viperin | CTACCAATCCAGCTTCAGA | The reverse primer for viperin specific gene |
CXCL10 | AGGAACCTCCAGTCTCAGCA | The forward primer for CXCL10 specific gene |
CXCL10 | ATTTTGCTCCCCTCTGGTTT | The reverse primer for CXCL10 specific gene |
IFITM1 | TCTTCTTGAACTGGTGCTGTC | The forward primer for IFITM1 specific gene |
IFITM1 | GTCGCGAACCATCTTCCTGT | The reverse primer for IFITM1 specific gene |
IFITM3 | TCCCAC GTACTCCAACTTCCA | The forward primer for IFITM3 specific gene |
IFITM3 | AGCACCAGAAACACGTGC ACT | The reverse primer for IFITM3 specific gene |
应用Graphpad Prism 6软件作图并分析数据。组间采用t检验比较差异,P < 0.05表示差异有统计学意义。
2 结果 2.1 HCV cured细胞株Huh 7A和Huh 7B的建立首先建立HCV亚基因组复制子系统。将体外转录的sg-JFH1 RNA电转到Huh 7细胞中,3 d后用5 μg/mL的blasticidin进行克隆筛选。筛选出2株单克隆细胞株,命名为6#和8#。
利用IFN-γ分别处理6#和8#HCV亚基因组复制子细胞,每隔2~3 d用含有IFN-γ培养液传代培养,3周后换不加IFN-γ培养基继续培养1周,将获得的2株细胞株分别命名为Huh 7A和Huh 7B,应用荧光定量PCR检测HCV RNA拷贝数。结果显示,6#和8#细胞株均检测出HCV RNA,提示HCV亚基因组复制子细胞株成功建立; Huh 7、Huh 7A和Huh 7B细胞内未检测出HCV RNA,提示Huh 7A和Huh 7B是HCV cured细胞株(图 1)。
2.2 Huh 7A和Huh 7B细胞株支持HCV高水平复制为验证Huh 7A和Huh 7B细胞株是否支持HCV高水平复制,利用HCV Jc1-G株分别感染Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞,感染72 h后收集上清液和细胞分别进行荧光素酶活性测定、蛋白质印迹和荧光定量PCR检测。结果显示,与Huh 7相比,Huh 7A和Huh 7B细胞上清中Gluc活性水平显著上调(图 2A); Huh 7A和Huh7B细胞内HCV NS3蛋白表达和HCV RNA拷贝数相比较Huh 7亦显著增加,其中HCV RNA水平较Huh 7细胞显著增加,与Huh 7.5细胞内病毒RNA水平接近(图 2B、C)。以上结果提示,所获得的Huh 7A和Huh 7B细胞株与HCV cured细胞株Huh 7.5在HCV易感性方面相似。
2.3 Huh 7A和Huh 7B细胞株RIG-I/MDA5/ MAVS的内源性表达为检测Huh 7A和Huh 7B细胞株内源性RIG-I/MDA5/MAVS表达,收集Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞分别进行蛋白质印迹和荧光定量PCR检测。结果显示,与Huh 7细胞相比,Huh 7A和Huh 7B细胞内RIG-I内源性蛋白表达轻微下调,分别降至Huh 7细胞的60%和80%,但mRNA水平差异无统计学意义(P>0.05),P值分别为0.56和0.14;Huh 7、Huh 7A和Huh 7B细胞内MDA5和MAVS蛋白表达和mRNA水平皆无显著差异(图 3A、B)。Huh 7.5细胞内源性RIG-I表达明显降低,蛋白水平和mRNA水平分别降至Huh 7细胞的21%和52%(P < 0.05)(图 3A、B)。有趣的是,Huh 7.5细胞内源性MDA5表达亦显著下调,蛋白水平几乎检测不到,mRNA水平仅有Huh 7细胞的27%(图 3A、B)。Huh 7.5细胞内源性MAVS蛋白和mRNA水平轻微上调,但差异无统计学意义(P=0.32),见图 3A、B。
2.4 Huh 7A和Huh 7B细胞株干扰素刺激基因(interferon-stimulated genes,ISGs)表达较Huh 7细胞无显著差异为验证Huh 7A和Huh 7B细胞株中抗病毒效应ISGs表达是否异常,利用IFN-α分别处理Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞,应用荧光定量PCR检测ISGs表达。结果显示,Huh 7A和Huh 7B细胞株isg56,mx1,mx2,oax1,oax2,viperin,cxcl10,ifitm1和ifitm3表达变化与Huh 7细胞株趋势一致,其mRNA水平与Huh 7细胞的相比皆无显著差异; 与Huh 7、Huh 7A和Huh 7B细胞株相比,Huh 7.5 ISGs表达变化和水平亦无明显差异(图 4A)。
为进一步验证ISGs mx1表达水平是否异常,利用不同浓度IFN-α分别处理Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞,应用荧光定量PCR检测mx1表达。结果显示,10 U/mL IFN-α即可提高细胞内mx1 mRNA水平,且随着IFN-α浓度的增加,mx1表达水平显著上调; 但这种变化在4种细胞之间皆无显著差异,提示Huh 7.5、Huh 7A和Huh 7B细胞株对HCV易感可能与mx1无关(图 4B)。
3 讨论目前HCV仍然是严重危害人类健康的重要病原体之一[1]。近年来,一些靶向HCV蛋白的药物(direct-acting antiviral agent, DAA)被批准上市,具有抗病毒效果好、副作用小的优点,但药物费用高昂,且部分患者治疗效果不佳[7]。虽然针对HCV的治疗已经取得重大进展,但病毒的生活周期等重要环节尚未研究透彻,还需深入探讨。Blight等发现HCV复制子细胞经过IFN-α处理后显示出对病毒易感的特性,将其命名为Huh 7.5[4],该细胞株是目前唯一公认支持HCV高复制水平的细胞株。为构建支持HCV高复制水平的细胞株,本研究采取IFN-γ治疗HCV复制子细胞策略,分别处理单克隆复制子细胞株6#和8#,筛选出2株细胞株(Huh 7A和Huh 7B)。实验结果显示,在Huh 7A和Huh 7B细胞株中,病毒基因组中插入的Gluc报告基因活性和病毒RNA复制水平明显上调,病毒蛋白的表达亦显著增加,接近Huh 7.5的病毒复制水平,表明Huh 7A和Huh 7B细胞株可支持病毒高水平复制。虽然不同的单克隆复制子细胞株中病毒复制水平存在差别,但本研究获得的2株HCV cured细胞株Huh 7A和Huh 7B对HCV易感性并无显著差异,提示HCV cured细胞株易感机制可能与宿主细胞因素相关。
有文献报道RIG-I/MDA5/MAVS通路通过识别HCV双链RNA后诱导产生IFN从而抑制病毒复制[8]。已有研究发现Huh 7.5细胞内RIG-I突变,但在Huh 7细胞中敲除该基因后并不能增加病毒复制水平,提示Huh 7.5细胞对HCV易感可能与RIG-I突变不相关[9]。本研究检测Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞中RIG-I/MDA5/MAVS蛋白和mRNA水平,发现Huh 7.5细胞表达RIG-I显著下调; 有意思的是MDA5表达亦明显降低,但这是否与Huh 7.5细胞对HCV易感相关还需进一步验证。而Huh 7A和Huh 7B细胞中RIG-I/MDA5/MAVS表达水平与Huh 7细胞无显著差异,说明Huh 7A和Huh 7B细胞对HCV易感可能与RIG-I/MDA5/MAVS通路无关,或许存在其他机制。
抗病毒ISGs mx1被报道可能与HCV cured细胞易感性相关,有报道发现用IFN-α刺激HCV cured细胞,抗病毒基因mx1激活倍数显著减少,敲除该基因后病毒复制水平增加,而回补该基因则抑制病毒复制[10]。本研究用IFN-α处理4种细胞并检测已报道的具有抗病毒效应的ISGs激活水平,发现无论在Huh 7.5细胞还是在Huh 7A和Huh 7B细胞中,ISGs的激活水平均与Huh 7细胞中的一致。为进一步验证mx1与Huh 7.5、Huh 7A和Huh 7B细胞HCV易感相关性,用不同浓度的IFN-α处理细胞,发现4种细胞中mx1激活水平随着IFN剂量增加而增加,激活倍数无显著差异,说明不同株的HCV cured细胞其易感性机制不同。
综上所述,对HCV cured细胞易感性虽有不少研究,但具体机制尚存在争议。下一步我们将在Huh 7.5、Huh 7A和Huh 7B细胞株中继续探索易感机制,为建立更好的细胞模型提供理论基础,从而为病毒学基础研究提供有力工具。
[1] |
Zhang Y, Zou J, Zhao X, Yuan Z, Yi Z. Hepatitis C virus NS5A inhibitor daclatasvir allosterically impairs NS4B-involved protein-protein interactions within the viral replicase and disrupts the replicase quaternary structure in a replicase assembly surrogate system[J]. J Gen Virol, 2019, 100(1): 69-83.
[DOI]
|
[2] |
Lavanchy D. The global burden of hepatitis C[J]. Liver Int, 2009, 29(Suppl 1): 74-81.
[URI]
|
[3] |
Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus[J]. Nat Rev Microbiol, 2007, 5(6): 453-463.
[DOI]
|
[4] |
Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication[J]. J Virol, 2002, 76(24): 13001-13014.
[DOI]
|
[5] |
Yi Z, Pan T, Wu X, Song W, Wang S, Xu Y, Rice CM, Macdonald MR, Yuan Z. Hepatitis C virus co-opts Ras-GTPase-activating protein-binding protein 1 for its genome replication[J]. J Virol, 2011, 85(14): 6996-7004.
[DOI]
|
[6] |
Marukian S, Jones CT, Andrus L, Evans MJ, Ritola KD, Charles ED, Rice CM, Dustin LB. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells[J]. Hepatology, 2008, 48(6): 1843-1850.
[DOI]
|
[7] |
Mawatari S, Oda K, Tabu K, Ijuin S, Kumagai K, Fujisaki K, Hashiguchi, M.Inada Y, Uto H, Hiramine Y, Kure T, Hori T, Taniyama O, Kasai A, Tamai T, Moriuchi A, Ido A. The co-existence of NS5A and NS5B resistance-associated substitutions is associated with virologic failure in hepatitis C virus genotype 1 patients treated with sofosbuvir and ledipasvir[J]. PLoS One, 2018, 13(6): e0198642.
[DOI]
|
[8] |
Du X, Pan T, Xu J, Zhang Y, Song W, Yi Z, Yuan Z. Hepatitis C virus replicative double-stranded RNA is a potent interferon inducer that triggers interferon production through MDA5[J]. J Gen Virol, 2016, 97(11): 2868-2882.
[DOI]
|
[9] |
Binder M, Kochs G, Bartenschlager R, Lohmann V. Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy[J]. Hepatology, 2007, 46(5): 1365-1374.
[DOI]
|
[10] |
Chen Q, Denard B, Huang H, Ye J. Epigenetic silencing of antiviral genes renders clones of Huh-7 cells permissive for hepatitis C virus replication[J]. J Virol, 2013, 87(1): 659-665.
[DOI]
|