文章快速检索     高级检索
  微生物与感染  2020, Vol. 15 Issue (6): 337-344      DOI: 10.3969/j.issn.1673-6184.2020.06.001
0
Contents            PDF            Abstract             Full text             Fig/Tab
消灭脊髓灰质炎行动现状分析及免疫策略建议
黄卓英 , 胡家瑜 , 孙晓冬 , 杨建萍     
上海市疾病预防控制中心,上海 200336
摘要:脊髓灰质炎曾在全球广泛流行和传播,严重危害儿童健康。自1988年世界卫生大会发起全球消灭脊髓灰质炎行动倡议以来,全球脊髓灰质炎防控工作取得显著进展,但消灭脊髓灰质炎工作仍面临重重挑战。在目前维持无脊髓灰质炎状态下,我国面临的主要问题是疫苗相关麻痹型脊髓灰质炎(vaccine associated paralytic poliomyelitis, VAPP)病例和脊髓灰质炎疫苗衍生病毒(vaccine-derived poliovirus,VDPV)病例的发生。为此,通过回顾消灭脊髓灰质炎工作取得的进展,总结不同国家或地区在消灭脊髓灰质炎过程中所采用的防控策略,尤其是不同国家或地区的脊髓灰质炎疫苗使用经验,分析消灭脊髓灰质炎最后阶段面临的挑战,进而提出应对策略和建议,即科学评价防控措施、适时调整脊髓灰质炎免疫策略、努力消除接种犹豫并提高疫苗接种率,这对早日实现根除脊髓灰质炎的目标是非常有必要的。
关键词脊髓灰质炎    免疫策略    疫苗    
Analysis of poliomyelitis eradication and recommendations for immunization strategies
HUANG Zhuoying , Hu Jiayu , Sun Xiaodong , YANG Jianping     
Shanghai Municiple Center for Disease Control and Prevention, Shanghai 200336, China
Abstract: Poliomyelitis is a global threat to children's health. Significant progress has been made in global polio prevention and control since the launch of the Global Polio Eradication Initiative by the World Health Assembly in 1988. The main problems facing our country in maintaining a polio-free state at present are vaccine-associated paralytic poliomyelitis (VAPP) and polio vaccine-derived virus (VDPV). The progress made in the eradication of poliomyelitis, the control strategies in the process of polio eradication, especially the experience of using polio vaccine in different countries and regions, and the challenges faced in the final phase of polio eradication were reviewed in this paper. Achieving the goals of polio eradication will rely on scientific evaluation, timely adjustment of polio immunization strategy, efforts to eliminate vaccination hesitancy and increasing the vaccination rate.
Keywords: Poliomyelitis    Immunization Strategy    Vaccine    

脊髓灰质炎是由脊髓灰质炎病毒3种血清型(Ⅰ、Ⅱ、Ⅲ型)中任意一型引起的急性肠道传染病。感染者临床特征为不对称弛缓性肌肉麻痹,其中多数患者因神经组织严重损害而留下跛行等终身残疾,俗称为“小儿麻痹症”[1-2]。接种脊髓灰质炎疫苗是预防和控制脊髓灰质炎最有效、最便捷、最经济的手段。本文通过回顾国内外消灭脊髓灰质炎的历程,分析国内外消灭脊髓灰质炎工作的形势和国内外不同消灭脊髓灰质炎的疫苗免疫策略及调整现状,探讨疾病消灭最后阶段面临的挑战,并提出应对策略。

1 国内外消灭脊髓灰质炎形势分析 1.1 全球脊髓灰质炎野病毒流行情况

脊髓灰质炎曾在全球广泛流行和传播。自1988年世界卫生大会(World Health Assembly, WHA)发起全球消灭脊髓灰质炎行动倡议以来,各成员国政府积极响应,全球消灭脊髓灰质炎工作取得显著进展[3]。全球范围内脊髓灰质炎野病毒(wild poliovirus, WPV)病例数从1988年的35万例降至2019年的175例,减少了99%以上[4],有WPV流行的国家也从125个减少到了2个。世界卫生组织(World Health Organization, WHO)美洲区[5]、西太区[6]、欧洲区[7]和东南亚区[8]先后于1994年、2000年、2002年和2014年实现无脊髓灰质炎目标。全球于1999年消灭Ⅱ型WPV病例;自2012年11月尼日利亚出现最后一个报告病例以来,再无Ⅲ型WPV病例报告。2019年10月WHO宣布全球消灭Ⅲ型WPV病例[9]。目前全球报告的脊髓灰质炎病例均由Ⅰ型WPV引起,2020年全年共发生Ⅰ型脊髓灰质炎野病毒病例140例[10]

1.2 我国维持无脊髓灰质炎现状

继1988年5月第41届WHA提出2000年全球消灭脊髓灰质炎的目标后,1991年中国政府向国际社会就中国实现消灭脊髓灰质炎的目标做出承诺。中国针对消灭脊髓灰质炎采取的防控措施包括:保持高水平常规免疫接种率;开展国家强化免疫日活动;建立高质量的实验室网络,加强急性弛缓性麻痹(acute flaccid paralysis, AFP)病例监测;提高对输入性WPV的快速反应能力[11]

通过上述防控措施,我国WPV病例数大幅下降。1964年我国WPV病例数4.41万例;1966—1977年是我国脊髓灰质炎疫苗突击接种后期阶段,年平均发病数迅速下降至1.18万例[12];1978年实施脊髓灰质炎疫苗免疫规划后,与实施免疫规划前相比,WPV病例数下降了70%;1988年,随着脊髓灰质炎疫苗接种率的进一步提高,脊髓灰质炎病例报告数下降至667例[13]。自1994年湖北省襄阳区发现最后1例脊髓灰质炎患者后,我国至今没有报告由本土WPV引起的脊髓灰质炎病例。2000年我国证实实现无脊髓灰质炎目标。

由于全球仍有国家存在WPV流行,我国实现无脊髓灰质炎目标后,仍然有输入WPV病例的风险。1995—1996年云南省报告发生4例由缅甸输入的WPV病例[14];1999年青海省监测到1例由印度输入的WPV病例[15];2011年新疆维吾尔自治区发生了由巴基斯坦输入WPV引起的疫情,共报告21例[16]。由于应急处置及时,同时脊髓灰质炎疫苗供应充足,保障了应急接种工作开展,故而疫情被迅速控制,阻断了输入WPV在我国的传播,我国重回无脊髓灰质炎状态。

消灭脊髓灰质炎后期,我国于1991年建立了AFP病例监测系统[17],监测系统一直维持高质量运转,并通过开展环境监测与健康人群带毒情况监测,及时发现脊髓灰质炎疫苗衍生病毒(vaccine-derived poliovirus,VDPV)。环境监测结果发现,VDPV中Ⅱ型病毒多于Ⅰ型和Ⅲ型。2018年4月,新疆维吾尔自治区乌鲁木齐市环境污水标本中检测到Ⅱ型VDPV株[18]。2019年四川省从AFP病例中分离出Ⅱ型VDPV[19]

1.3 2019冠状病毒病疫情对脊髓灰质炎疫情的影响

2019冠状病毒病(COVID-19)大流行对包括消灭脊髓灰质炎在内的公共卫生计划,如疫苗接种率、AFP病例监测系统的运转质量、国际旅行的限制措施、防护措施等均产生重大影响,这些因素增加了脊髓灰质炎传播的风险。在脊髓灰质炎流行的国家,COVID-19大流行在不同程度上严重干扰了脊髓灰质炎监测,常规免疫接种也受到影响[20]。国际旅行恢复后,存在脊髓灰质炎病毒输入的未知风险,脊髓灰质炎输入病例和Ⅱ型循环VDPV (circulating VDPV, cVDPV)发生风险随之增加。2020年COVID-19大流行使得西非和埃塞俄比亚的脊髓灰质炎疫情应对工作受到严重阻碍,免疫接种应对措施不到位,继而发生Ⅱ型cVDPV的高水平传播[21]

2 脊髓灰质炎疫苗免疫策略分析

在脊髓灰质炎防控措施中,使用疫苗预防是关键策略。保持高水平常规免疫接种率这一策略保证了公共卫生服务的公平性,使得脊髓灰质炎得到有效控制,继而消除和消灭,实现了其他措施难以替代的效益。

2.1 国内外使用的脊髓灰质炎疫苗

脊髓灰质炎疫苗分为脊髓灰质炎减毒活疫苗(oral poliomyelitis attenuated live vaccine, OPV)和脊髓灰质炎灭活疫苗(inactivated poliovirus vaccine,IPV)两种。由于脊髓灰质炎病毒有Ⅰ型、Ⅱ型、Ⅲ型3个血清型,制成的OPV疫苗有单价OPV(mOPV,含Ⅰ型、Ⅱ型、Ⅲ型中1个型别)、二价OPV(bOPV, 含Ⅰ型、Ⅱ型、Ⅲ型中2个型别)和三价OPV(tOPV,含Ⅰ型、Ⅱ型、Ⅲ型所有型别)。自2016年5月起,我国儿童常规免疫使用的OPV为含有Ⅰ型和Ⅲ型血清型的bOPV。IPV包含Ⅰ型、Ⅱ型和Ⅲ型3个血清型别,目前使用的IPV包括来源于WPV的wIPV和来源于疫苗的赛宾(Sabin)株IPV(sIPV)。除了单一成分的脊髓灰质炎疫苗外,还有包括百日咳、白喉、破伤风、b型流感嗜血杆菌和IPV成分的联合疫苗可供选择接种。

2.2 不同国家或地区脊髓灰质炎疫苗免疫策略

1974年,WHO提出扩大免疫规划(Expanded Programme on Immunization, EPI)。20世纪90年代,全球1岁以下儿童3剂OPV免疫覆盖率达到80%[22]。疫苗接种在不同国家的维持无脊髓灰质炎状态中均扮演着重要角色。各国使用不同的脊髓灰质炎疫苗免疫策略,取得了不同的实施效果(表 1)。

表 1 部分国家或地区脊髓灰质炎疫苗免疫策略与实施效果比较 Tab. 1 Comparison of poliomyelitis vaccination strategies and implementation experiences in various countries and regions
Country/region Vaccination strategy Implementation experience
U.S. In 1955, started using IPV;
In 1961, started using OPV;
In 1978, restarted using IPV;
In 1997, started to implement a schedule of 2 doses IPV+2 doses OPV;
In 2000, switched to an exclusive 4-dose IPV strategy. The immunization schedule includes a first dose at 2 months (earliest 6 weeks), the second dose administered 2 months later, at 6-18 months administer the third dose, and at≥4 years administer 1 booster.
By 1965, incidence of disease decreased by 99% compared to the pre-vaccine era[23];
During 1997-1999, a total of 13 cases of VAPP occurred, all among individuals administered OPV; more than 95% of those vaccinated seroconverted for all three serotypes[24];
Since 1997, there have been no cases of VAPP among individuals vaccinated with IPV[25].
Russia From 1959-2008, used tOPV (During 2006-2007, particular healthy children were administered IPV);
In 2008, started a new sequential vaccination sequence of 2 doses IPV+3 doses OPV: IPV administered at 3 and 4.5 months, and OPV administered at 6 months, 18 months, and 14 years.
In 2002, Russia was confirmed polio-free. After the use of the sequential vaccination sequence, no VAPP cases reduced rapidly. During 2008-2014, 20 cases of VAPP were reported, with the incidence rate reduced from 1 case/1 590 000 doses to 1 case/4 180 000 doses[26].
Finland Has only ever used IPV, never OPV;
In 1957, started using IPV. Before 1960, vaccination coverage was only 18%, in 1960-1961 implemented a large scale supplementary vaccination activities, supplying all vaccines free of charge, such that 98% of children completed all basic vaccines prior to school.
Before using IPV, a large number of polio cases were reported. In 1954, 790 cases of type Ⅰ polio were reported. Since 1964, there have been no reports of polio cases among children[27].
The Netherlands Has only ever used IPV, never OPV. Among a religious group with over 200 000 members distributed across the country, which refuses vaccination, there have been two polio outbreaks. The first outbreak caused 110 cases of type Ⅰ virus in 1978, and the second outbreak had 71 cases of type Ⅲ virus in 1992-1993. Only one case of polio occurred in other Dutch people[28-31].
Japan In 1964, OPV was added to the EPI.
In Sep 2012, switched from an exclusively OPV schedule to an exclusively IPV schedule;
In Nov 2012, introduced sIPV and DTap-sIPV;
In Dec 2015, allowed DTap-wIPV to also be used[32].
In 1980, reported the last case of polio[33-34].
Since 2012, there has been no report of VDPV.
Mainland China In 1965, started to promote OPV gradually;
In May 2016, adopted a strategy of 1 dose IPV+3 doses bOPV, whereby the first dose of OPV was replaced with IPV, and three doses of bOPV replaced tOPV.
In Jan 2020, adopted a strategy of 2 doses IPV+2 doses bOPV.
In 2000, was certified polio-free by WHO;
In 2011, there was an outbreak of imported polio in Xinjiang;
In 2019, type Ⅱ VDPV was discovered in Sichuan province.
Shanghai In 1963, began to promote OPV in the city, and in 1983 established vaccination clinics for routine vaccinations;
Twice a year conducts intensive vaccination outreach activities, mainly among non-local children, in order to improve vaccination coverage among children with missed vaccinations;
In May 2016, started to implement a 2-dose IPV+2-dose bOPV schedule whereby children receive 4 doses of polio vaccines with the following schedule: 1 dose of IPV administered at 2 months and 3 months, and 1 dose of bOPV administered at 4 months and 4 years;
In Oct 2020, starting to implement a 4-dose IPV schedule.
Since 1988, there has been no wild poliovirus case.
注:上海使用的免疫程序不同于全国统一程序,故单列。
2.3 我国脊髓灰质炎疫苗免疫策略

我国于1965年开始逐步推广使用OPV。1988、1990和1995年我国各省相继实现了以省、县、乡为单位的儿童免疫接种率85%的目标[35];1996—2000年,全国部分地区开展了7次14轮OPV强化免疫活动,累计接种人数达8亿人次[36],常规免疫接种率也一直维持在高水平[37],在人群中建立了有效的免疫屏障。根据消灭脊髓灰质炎工作进展,2012年5月26日,WHA提出《消灭脊髓灰质炎最后阶段战略计划(2013-2018)》,该计划包括脊髓灰质炎病毒的发现和阻断其传播、常规免疫系统的加强和停止使用OPV、生物防护和认证、遗留资源规划等[38]。为响应WHO的号召,自2016年5月起,我国脊髓灰质炎疫苗常规免疫首剂用IPV替代OPV,同时用bOPV替代tOPV,实行“IPV+bOPV+bOPV+bOPV”的序贯免疫策略[39]。自2020年1月1日起,在全国范围内将脊髓灰质炎疫苗常规免疫程序由1剂IPV加3剂bOPV,调整为2剂IPV加2剂bOPV,并建议以下特殊人群按照说明书全程使用IPV,即原发性免疫缺陷、胸腺疾病、HIV感染、正在接受化疗的恶性肿瘤、近期接受造血干细胞移植、正在使用具有免疫抑制或免疫调节作用的药物[例如大剂量全身皮质类固醇激素、烷化剂、抗代谢药物、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)抑制剂、白细胞介素(interleukin, IL)-1阻滞剂或其他免疫细胞靶向单克隆抗体治疗]以及目前或近期曾接受免疫细胞靶向放射治疗的患者[40]。自2020年10月起,上海市进一步调整适龄儿童脊髓灰质炎疫苗常规免疫程序,成为全国首个实现全程4剂次IPV免费接种的城市[41]

3 消灭脊髓灰质炎后期面临的挑战和应对策略 3.1 WPV输入传播风险仍然存在

近几年来,个别国家由于政治、经济因素无法建立有效的免疫屏障,仍有WPV本土流行,故巴基斯坦和阿富汗可能成为WPV输出地[42]。基于上述原因,对于人员流动频繁、交通发达的地区,尤其应重视评估发生脊髓灰质炎WPV及VDPV输入和传播的风险,维持无脊髓灰质炎的工作状态不能放松。

3.2 疫苗相关病例和疫苗衍生病毒病例

2016年全球脊髓灰质炎疫苗免疫策略调整,全球同步将tOPV调整为bOPV,这之后脊髓灰质炎的流行形势发生变化。2016年巴基斯坦、叙利亚、尼日利亚和民主刚果4个国家发生了6起Ⅱ型cVDPV疫情[43],超过脊髓灰质炎疫苗免疫策略转换初期全球1~2起的预期。2017年报告Ⅱ型cVDPV病例96例,是WPV病例的4倍以上(96/22);2019年报告Ⅱ型cVDPV病例350例,是WPV病例的2倍(350/175)。原因可能是将tOPV中Ⅱ型组分撤出后,未及时接种IPV,从而造成Ⅱ型脊髓灰质炎疫苗相关病毒在人群中传播,基因变异逐渐增加[18]。为及时有效应对Ⅱ型VDPV的暴发疫情,我国需要加强Ⅱ型mOPV疫苗的技术研究储备。

3.3 消灭脊髓灰质炎的目标发生变化

1988年,WHA决议确定了“截至2000年全球消灭脊髓灰质炎”的目标[44]。在维持无脊髓灰质炎状态下,目前面临的主要问题是疫苗相关麻痹型脊髓灰质炎(vaccine-associated paralytic poliomyelitis, VAPP)病例和VDPV病例的发生。这两类病例对家庭和个人造成的沉重经济和心理负担容易影响疫苗受种者监护人对免疫规划工作的信心,进而影响社会稳定。2012年5月,WHA提出制定和实施《消灭脊髓灰质炎最后阶段战略计划(2013-2018)》[38],同时确定消灭WPV和消灭VDPV两个平行目标。《2019-2023消灭脊髓灰质炎最后阶段战略计划》[45]再次指出,消灭脊髓灰质炎不仅要消灭WPV引起的病例,也要消灭脊髓灰质炎疫苗病毒引起的VAPP和VDPV病例。

3.4 脊髓灰质炎免疫策略分析

在当前背景下,不同的脊髓灰质炎疫苗免疫策略各有其优缺点(见表 2)。“IPV+OPV”序贯免疫策略有良好的安全性和免疫原性[46-49],能优化脊髓灰质炎疫苗的体液免疫应答和黏膜免疫应答。上海市实施“IPV+IPV+bOPV+bOPV”免疫策略后尚无VDPV和VAPP病例报告,取得了良好的防控成效。但是OPV在罕见情况下可发生不良事件,只要服用OPV,理论上就存在发生VAPP和VDPV病例的可能。俄罗斯实施序贯免疫程序后,仍有服苗者VAPP病例和服苗接触者VAPP病例报告[50]。2014年加拿大文献报告,1名1岁儿童先接种2剂IPV后口服OPV,结果发生了VAPP。该病例粪便标本经病毒分离后测序,结果为Ⅲ型脊髓灰质炎病毒,与OPV株同源性达99.7%[51]。WHO《2019-2023年消灭脊髓灰质炎终结战略计划》[45]提出,IPV能预防3个型别的脊髓灰质炎病毒感染,为人群提供保护作用。2024年以后的愿景计划是停用OPV并使用IPV来预防可能重现的所有类型的脊髓灰质炎。

表 2 不同脊髓灰质炎疫苗免疫策略的优缺点 Tab. 2 Advantages and disadvantages of different strategies for poliomyelitis vaccination
Contents Different strategies for poliomyelitis vaccination
2 doses IPV+2 doses bOPV 4 doses IPV
Advantages Retention of mucosal immunity and the effect of transmission;
Low risk of inadequate vaccine supply
No risk for VDPV or VAPP;
High immunogenicity for type Ⅱ poliomyelitis;
Reduced budget for low temperature refrigerator;
Lowered cost of vaccines for parents and improved fairness
Disadvantages Risks for Types Ⅰ and Ⅲ VDPV and VAPP remain The WHO does not recommend countries vulnerable to wild-type poliomyelitis and with insufficient vaccination coverage to exclusively use IPV;
Effect of blocking transmission is not ideal;
Capacity currently cannot be met;
High funding demands
注:表内列出的免疫策略是大部分国家采用的。

免疫策略调整的前提是稳定、充足的疫苗供应保障。无持续足够疫苗供应时,接种率可能会下降[52]。国产sIPV的问世为我国IPV疫苗供应提供了保障。Ⅲ期临床研究显示,sIPV组接种疫苗后抗脊髓灰质炎病毒Ⅰ、Ⅱ、Ⅲ型中和抗体血清阳转率高[53]。sIPV对wIPV疫苗株、3个型别的流行野毒株以及疫苗衍生株的抗体交叉中和试验结果显示,受试样本均产生交叉反应,抗体滴度达到保护性水平,提示sIPV能够有效地预防脊髓灰质炎病毒感染[54-55]

4 结语

目前全球消灭脊髓灰质炎工作已进入尾声阶段,除了要继续消灭WPV外,更重要的是减少由病毒的疫苗株即OPV引起的VAPP、VDPV病例或事件发生。在当前形势下,COVID-19大流行给消灭脊髓灰质炎工作带来了新的挑战。根据目前消灭脊髓灰质炎战略规划,将序贯免疫程序调整为全程IPV免疫程序是多数国家采取的免疫策略。为了继续维持无脊髓灰质炎状态,应重点加强脊髓灰质炎监测,妥善做好脊髓灰质炎病毒封存工作;适时调整免疫策略,做好疫苗中长期使用规划;同时加强防范输入性WPV和VDPV等风险发生,做好脊髓灰质炎疫苗的储备,以顺利实现无脊髓灰质炎的最终目标。

参考文献
[1]
顾方舟. 脊髓灰质炎[M]. 上海: 上海科学技术出版社, 1984: 1.
[2]
World Health Organization. Poliomyelitis[EB/OL]. Geneva: World Health Organization, 2019: (2019-07-22). https://www.who.int/news-room/fact-sheets/detail/poliomyelitis.
[3]
World Health Organization. Global eradication of poliomyelitis by the year 2000[J]. Can Dis Wkly Rep, 1988, 14(48): 219-20. [PubMed]
[4]
Vidor E, Plotkin SA. Poliovirus vaccine—inactivated[M]. In: Plotkin SA, Orenstein WA, Offit PA. ed. Vaccines. 6th ed. U.S.A: Saunders, 2012: 573-597.
[5]
Centers for Disease Control and Prevention (CDC). Certification of poliomyelitis eradication-the Americas, 1994[J]. MMWR Morb Mortal Wkly Rep, 1994, 43(39): 720-722.
[6]
Centers for Disease Control and Prevention (CDC). Certification of poliomyelitis eradication--Western Pacific Region, October 2000[J]. MMWR Morb Mortal Wkly Rep, 2001, 50(1): 1-3. [URI]
[7]
Centers for Disease Control and Prevention (CDC). Certification of poliomyelitis eradication--European Region, June 2002[J]. MMWR Morb Mortal Wkly Rep, 2002, 51(26): 572-574.
[8]
World Health Organization. Polio-free certification of the WHO South-East Asia Region, March 2014[J]. Wkly Epidemiol Rec, 2014, 89(44): 500-504. [URI]
[9]
World Health Organization. Two out of three wild poliovirus strains eradicated[EB/OL]. Geneva: World Health Organization, (2019-10-24). https://www.who.int/news-room/feature-stories/detail/two-out-of-three-wild-poliovirus-strains-eradicated.
[10]
World Health Organization. Global wild poliovirus 2016-2021[EB/OL]. (2021-03-02)[2021-03-07]. https://polioeradication.org/wp-content/uploads/2021/03/weekly-polio-analyses-WPV-20200302.pdf.
[11]
董德祥. 中国消灭脊髓灰质炎--历史回顾及体会[J]. 国外医学·流行病学传染病学分册, 2004, 31(5): 261-264. [CNKI]
[12]
王华庆, 安志杰, 尹遵栋. 国家免疫规划七种传染病70年防控成就回顾[J]. 中国疫苗和免疫, 2019, 25(4): 359-367. [CNKI]
[13]
张荣珍. 中国消灭脊髓灰质炎工作进展[J]. 中华流行病学杂志, 1999, 20(5): 264-268. [DOI]
[14]
卫生部疾病控制司计划免疫管理处. 云南省发现输入性脊髓灰质炎野病毒病例[J]. 中国计划免疫, 1996, 2(5): 224-225. [CNKI]
[15]
陈暹, 段万瑞, 石西安, 赵建海. 循化撒拉族自治县1例输入性脊髓灰质炎野病毒病例流行病学调查与分析[J]. 中国计划免疫, 2000, 6(5): 257-259. [DOI]
[16]
Luo HM, Zhang Y, Wang XQ, Yu WZ, Wen N, Yan DM, Hua-Qing, Wang HQ, Wushouer F, Wang HB, Xu AQ, Zheng JS, Li DX, Cui H, Wang JP, Zhu SL, Feng ZJ, Cui FQ, Ning J, Hao LX, Fan CX, Ning GJ, Yu HJ, Wang SW, Liu DW, Wang DY, Fu JP, Gou AL, Zhang GM, Huang GH, Chen YS, Mi SS, Liu YM, Yin DP, Zhu H, Fan XC, Li XL, Ji YX, Li XL, Tang HS, Xu WB, Wang Y, Yang WZ. Identification and control of a poliomyelitis outbreak in Xinjiang, China[J]. N Engl J Med, 2013, 369(21): 1981-1990. [DOI]
[17]
张丽芬. 八省疫苗相关麻痹型脊髓灰质炎病例流行病学特征分析[D]. 北京: 中国疾病预防控制中心, 2015.
[18]
宁静, 杨宏, 阿迪力·司马义, 曹雷, 王培生, 樊春祥, 凯赛尔·吾斯曼, 张勇, 周红俊, 施文, 唐海淑, 关静, 马超, 郝利新, 王华庆, 温宁, 尹遵栋. 中国脊髓灰质炎疫苗免疫策略转换后首次在污水中发现Ⅱ型疫苗衍生脊髓灰质炎病毒的应急处置[J]. 中国疫苗和免疫, 2019, 25(4): 373-377, 387. [CNKI]
[19]
张倩, 杨宏. 2019年四川省1起Ⅱ型疫苗衍生脊髓灰质炎病毒循环事件的识别和早期应对[J]. 中国疫苗和免疫, 2020, 26(3): 357-358. [CNKI]
[20]
世界卫生组织执行委员会第一四八届会议临时议程项目15.2. 脊髓灰质炎: 脊灰过渡计划和脊灰认证后工作总干事的报告[R/OL]. 日内瓦: 世界卫生组织, 2020: (2020-12-16). https://apps.who.int/gb/ebwha/pdf_files/EB148/B148_23-ch.pdf.
[21]
World Health Organization. Statement of the twenty-fifth polio IHR Emergency Committee[EB/OL]. Geneva: WHO, 2020: (2020-06-23). https://www.who.int/news/item/23-06-2020-statement-of-the-25th-polio-ihr-emergency-committee.
[22]
World Health Organization: Department of Immunization, Vaccines and Biologicals. WHO vaccine-preventable diseases: monitoring system, 2010 Global Summary[R]. Geneva: WHO, 2006: 22.
[23]
Schonberger LB, Kaplan J, Kim-Farley R, Moore M, Eddins DL, Hatch M. Control of paralytic poliomyelitis in the United States[J]. Rev Infect Dis, 1984, 6(Suppl.2): S424-S426. [URI]
[24]
Faden H, Modlin JF, Thoms ML, McBean AM, Ferdon MB, Ogra PL. Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses[J]. J Infect Dis, 1990, 162(6): 1291-1297. [DOI]
[25]
Iqbal S, Shi J, Seib K, Lewis P, Moro PL, Woo EJ, Shimabukuro T, Orenstein WA. Preparation for global introduction of inactivated poliovirus vaccine: safety evidence from the US Vaccine Adverse Event Reporting System, 2000-12[J]. Lancet Infect Dis, 2015, 15(10): 1175-1182. [DOI]
[26]
Ivanova OE, Eremeeva TP, Morozova NS, Shakaryan AK, Korotkova EA, Kozlovskaya LI, Baykova OY, Krasota AY, Gmyl AP. Vaccine-associated paralytic poliomyelitis in the Russian Federation in 1998-2014[J]. Int J Infect Dis, 2018, 76: 64-69. [DOI]
[27]
Lapinleimu K. Elimination of poliomyelitis in Finland[J]. Rev Infect Dis, 1984, 6(Suppl 2): 45-460. [PubMed]
[28]
Hofman B. Poliomyelitis in the Netherlands before and after vaccination with inactivated poliovaccine[J]. J Hyg (Lond), 1967, 65(4): 547-557. [URI]
[29]
Committee on Infectious Diseases, American Academy of Pediatrics. Poliovirus infections[M]. In: Kimberlin DW, Brady MT, Jackson MA, Long SS, eds. Red Book Report of the Committee of Infectious Diseases. 31st ed. U.S.A: American Academy of Pediatrics, 2018: 657-664..
[30]
Bijkerk H. Poliomyelitis in the Netherlands[J]. Dev Biol Stand, 1981, 47: 233-240.
[31]
Bijkerk H. Poliomyelitis epidemic in the Netherlands, 1978[J]. Dev Biol Stand, 1979, 43: 195-206. [PubMed]
[32]
Satoh H, Tanaka-Taya K, Shimizu H, Goto A, Tanaka S, Nakano T, Hotta C, Okazaki T, Itamochi M, Ito M, Okamoto-Nakagawa R, Yamashita Y, Arai S, Okuno H, Morino S, Oishi K. Polio vaccination coverage and seroprevalence of poliovirus antibodies after the introduction of inactivated poliovirus vaccines for routine immunization in Japan[J]. Vaccine, 2019, 37(14): 1964-1971. [DOI]
[33]
National Institute of Infectious Diseases. Annual report of the NESVPD: Poliomyelitis[EB/OL]. Tokyo: Ministry of Health, Labour and Welfare, 1980. http://idsc.nih.go.jp/yosoku/index-E.html.
[34]
Hara M, Hagiwara A, Yoneyama T, Saito Y, Shimojo H. Antigenic and biochemical characterization of poliovirus type 1 isolates of non-vaccine origin[J]. Microbiol Immunol, 1983, 27: 1057-1065. [DOI]
[35]
潘原勇. 扩大免疫后中国免疫规划工作面临的机遇与挑战[J]. 大众科技, 2014, 16(11): 229-231, 228. [DOI]
[36]
中国消灭脊髓灰质炎证实委员会. 中国消灭脊髓灰质炎证实报告[R]. 北京: 中国消灭脊髓灰质炎证实委员会, 2000: 39-40.
[37]
中华人民共和国卫生部. 2004年全国计划免疫审评报告[M]. 北京: 人民卫生出版社, 2005: 61-66.
[38]
World Health Organization. Polio Eradication and Endgame Strategic Plan 2013-2018[EB/OL]. Geneva: World Health Organization, 2013: (2013-02-01)[2018-10-01]. https://polioeradication.org/wp-content/uploads/2016/07/PEESP_EN_A4.pdf.
[39]
中华人民共和国国家卫生与计划生育委员会疾病预防控制局. 我国响应世卫组织决议实施脊灰疫苗免疫新策略[EB/OL]. 北京: 中华人民共和国国家卫生与计划生育委员会, 2016: (2016-04-29). http://www.nhc.gov.cn/jkj/s3582/201604/8c760a934d5b4d41a81752915c58d304.shtml.
[40]
中华人民共和国国家卫生与计划生育委员会疾病预防控制局. 国家免疫规划疫苗儿童免疫程序及说明(2016年版)[EB/OL]. 北京: 中华人民共和国国家卫生与计划生育委员会, 2016: (2016-12-06). http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=a91fa2f3f9264cc186e1dee4b1f24084.
[41]
上海市卫生健康委员会, 上海市中医药管理局. 上海将调整免疫规划脊灰疫苗和含麻疹成分疫苗的免疫程序[EB/OL]. 上海: 上海市卫生健康委员会, 上海市中医药管理局, 2020: (2020-07-27). http://wsjkw.sh.gov.cn/gzdt1/20200728/d6440867ce9947898e463ba654c8a07f.html.
[42]
韩辉, 谭克为, 宋亚京, 徐宝梁, 左锋. 2009-2013年脊髓灰质炎疫情分析[J]. 口岸卫生控制, 2015, 20(5): 36-39, 44. [DOI]
[43]
Wang HB, Zhang LF, Yu WZ, Wen N, Yan DM, Tang JJ, Zhang Y, Fan CX, Reilly KH, Xu WB, Li L, Ding ZR, Luo HM. Cross-border collaboration between China and Myanmar for emergency response to imported vaccine derived poliovirus case[J]. BMC Infect Dis, 2015, 15: 18. [DOI]
[44]
温宁. WHO消灭脊髓灰质炎计划实施与面临的困难[J]. 中国实用儿科杂志, 2010, 25(3): 187-190. [CNKI]
[45]
World Health Organization. Polio endgame strategy 2019-2023[EB/OL]. Geneva: World Health Organization, 2019: (2019-04-30). https://polioeradication.org/news-post/the-polio-endgame-strategy-2019-2023/.
[46]
黄卓英, 孙晓冬, 刘捷宸, 李智, 任佳, 吴琳琳, 胡家瑜, 张军楠. 不同毒株脊髓灰质炎灭活疫苗开展序贯免疫程序接种的安全性观察[J]. 中华流行病学杂志, 2019, 40(5): 565-570. [DOI]
[47]
卢莉, 李晓梅, 刘东磊, 张合润, 张朱佳子, 王海红, 刘芳, 宁召起, 张丽文, 褚平, 解艳涛, 许颖, 李娟, 庞星火, 邓瑛. 脊髓灰质炎灭活疫苗和减毒活疫苗不同序贯免疫程序的基础免疫效果研究[J]. 中华预防医学杂志, 2012, 46(6): 510-513. [DOI]
[48]
黄卓英, 孙晓冬, 刘敏勇, 李崇山, 任佳, 胡家瑜, 杨建萍, 刘捷宸, 李智, 杨玉颖, 李云逸, 陆菁. 不同毒株脊髓灰质炎疫苗序贯免疫程序的免疫原性分析[J]. 中华预防医学杂志, 2019, 53(5): 513-518.
[49]
林喜乐, 杨洁, 叶晓玲. 不同序贯程序的脊髓灰质炎灭活疫苗和减毒活疫苗的免疫效果研究[J]. 现代预防医学, 2018, 45(2): 344-347. [CNKI]
[50]
Ivanova OE, Eremeeva YP, Morozava NS, Shakaryan AK, Korotkova EA, Kozlovskaya LI, Baykova OY, Krasota AY, Gmyl AP. Vaccine-associated paralytic poliomyelitis in the Russian Federation in 1998-2014[J]. I Int J Infect Dis, 2018, 76: 64-69. [DOI]
[51]
Desai S, Diener T, Tan BK, Lowry NJ, Talukdar C, Chrusch W, Wiebe S. An unusual case of vaccine-associated paralytic poliomyelitis[J]. Can J Infect Dis Med Microbiol, 2014, 25(4): 227-228. [DOI]
[52]
沈军, 朱启镕. 我国消灭脊髓灰质炎野病毒流行后的脊髓灰质炎疫苗接种[J]. 中国实用儿科杂志, 2016, 31(5): 331-332. [CNKI]
[53]
Chinese Academy of Medical Sciences. The clinical trial protocol for the inactivated poliomyelitis vaccine made from Sabin strains (IPV) (Sabin IPV)[EB/OL]. 2010: (2016-08-02). https://clinicaltrials.gov/show/NCT01056705.
[54]
董少忠, 朱文兵. Sabin株脊髓灰质炎灭活疫苗在全球消灭脊髓灰质炎最后阶段的作用[J]. 中华预防医学杂志, 2016, 50(12): 1032-1035. [DOI]
[55]
Ohfuji S, Ito K, Ishibashi M, Shindo S, Takasaki Y, Yokoyama T, Yokoyama T, Yamashita Y, Shibao K, Nakano T, Tsuru T, Irie S, Hirota Y. Immunogenicity study to investigate the interchangeability among three different types of polio vaccine: A cohort study in Japan[J]. Medicine (Baltimore), 2017, 96(23): e7073. [DOI]

文章信息

黄卓英, 胡家瑜, 孙晓冬, 杨建萍
HUANG Zhuoying, Hu Jiayu, Sun Xiaodong, YANG Jianping
消灭脊髓灰质炎行动现状分析及免疫策略建议
Analysis of poliomyelitis eradication and recommendations for immunization strategies
微生物与感染, 2020, 15(6): 337-344.
Journal of Microbes and Infections, 2020, 15(6): 337-344.
通信作者
胡家瑜
E-mail:hujiayu@scdc.sh.cn;
孙晓冬
E-mail:Xiaodong@scdc.sh.cn

工作空间