文章快速检索     高级检索
  微生物与感染  2022, Vol. 17 Issue (5): 317-326      DOI: 10.3969/j.issn.1673-6184.2022.05.007
0
Contents            PDF            Abstract             Full text             Fig/Tab
天然产物抗病原真菌的研究进展
吴显伟 , 田丽 , 胡转楠 , 周伟 , 邱磊 , 张顺先 , 张少言 , 鹿振辉     
上海中医药大学附属龙华医院呼吸疾病研究所,上海 200032
摘要:目前,侵袭性真菌感染的发病率逐年上升,但现有抗真菌药物匮乏且新药研发相对缓慢,因此亟须发现和开发新的抗真菌药物。天然产物具有来源广、不良反应少等特点,是开发抗真菌药物的来源之一。大量研究证明,从植物和中药中分离的许多化合物具有抗真菌活性,且抗真菌机制多样。本文综述了天然产物抗真菌药物研发的最新进展,调查了具有潜在抗真菌活性的天然产物,并展望了新型抗真菌候选药物的开发前景。
关键词侵袭性真菌感染    抗真菌药物    天然产物    中药    抗真菌机制    
Research on antifungal activity of natural products
WU Xianwei , TIAN Li , HU Zhuannan , ZHOU Wei , QIU Lei , ZHANG Shunxian , ZHANG Shaoyan , LU Zhenhui     
Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
Abstract: The incidence of invasive fungal infections has increased year by year. However, the current antifungal drugs are scarce and the development of new drugs is relatively slow. Therefore, it is urgent to develop new antifungal drugs. Natural products have the characteristics of wide sources and low side effects. They are one of the sources of antifungal drugs. A large number of studies have proved that many compounds isolated from plants and traditional Chinese medicine have antifungal activities, and the antifungal mechanisms are different. The present paper reviews the latest progress on the development of antifungal drugs obtained from natural products, investigates the natural products with potential antifungal activity, and prospects the development of new antifungal candidates.
Keywords: Invasive fungal infection    Antifungal drug    Natural product    Traditional Chinese medicine    Antifungal mechanism    

近年来,随着医学技术(如移植医学)的进步,越来越多的疾病可被治愈,但其导致的免疫抑制人群数量也迅速增加[1-2],促进了侵袭性真菌感染(invasive fungal infection,IFI)的发病[3],给临床真菌感染治疗带来了巨大挑战。真菌感染可分为浅表/皮下感染(皮肤癣病、花斑癣和孢子丝菌病)和侵袭性真菌感染[假丝酵母(也称念珠菌)病、曲霉病和隐球菌病],可累及任何类型的组织或器官,导致骨骼、肺和神经等损伤[3-4]。侵袭性真菌感染在免疫受损患者中尤其常见,如感染人类免疫缺陷病毒(human immunodeficiency virus,HIV)的患者,以及器官或骨髓移植和癌症患者等[4-5]。侵袭性真菌能引起可能导致死亡的全身感染,死亡率高达90%,每年造成约150万人死亡,严重威胁人类公共卫生健康[5]

抗真菌药物可控制和治疗真菌感染,改变真菌的自然进化,其研发取得了重大进展。目前,临床上主要使用多烯类、唑类、烯丙胺类、棘白菌素类和氟胞嘧啶类5类抗真菌药物,包括两性霉素B、特比萘芬、氟康唑、5-氟胞嘧啶和卡泊芬净等[6]。然而,最近的流行病学数据显示,由于抗真菌药物的滥用及免疫抑制人群数量的增加,耐药和多重耐药菌株的临床检出率显著升高[7],特别是念珠菌属和曲霉属,对唑类药物耐药的非白念珠菌和烟曲霉的临床检出率正不断升高[8]。近年来获得极大关注的“超级真菌”——耳道念珠菌,其高达90%的临床分离株对氟康唑耐药[9]。因此,人们亟须发现和开发新的抗真菌药物,更新药物库,以应对新的耐药菌株的出现。

抗真菌药物的缺乏及真菌耐药性的出现,使得从化学合成产物或天然产物中发现和筛选新的抗真菌药物成为一项紧迫的任务。与化学合成产物相比,天然产物具有来源广、结构多样、毒性相对较低等优点[10],无论是以其原有形式还是作为结构优化的原始模板来获得高效安全的衍生物,天然产物都是抗真菌药物库的潜在来源。中药是天然产物的资源库,从中草药中分离得到的许多化合物被证明具有多种药理活性,如抗细菌、抗肿瘤、抗病毒和抗真菌活性[11]。鉴于目前抗真菌药物的缺乏和中药的有效性,从天然产物中开发抗真菌药物具有良好的前景。本文简要回顾了抗真菌天然产物的研究现状。

1 天然产物的抗真菌机制

目前,临床上用于治疗真菌感染的药物主要是多烯类、唑类、烯丙胺类、氟嘧啶类和棘白菌素,如两性霉素B、特比萘芬、氟康唑、5-氟胞嘧啶和卡泊芬净等[5],它们的作用靶点各不相同。与此类似,天然产物的抗真菌机制也不尽相同。明确天然产物的抗真菌机制有利于人们针对性地开发新一代抗真菌药物,本文从以下几个方面阐述天然产物的抗真菌靶点。

1.1 靶向细胞膜

细胞膜是许多代谢过程发生的场所,同时它能将细胞内容物与周围环境分隔开,以维持细胞内部稳态。因此,细胞膜的完整性和流动性对真菌细胞的生存和生长至关重要。提取自接骨木的松脂醇能破坏白念珠菌的细胞膜,且对人红细胞没有溶血活性,具有潜在的抗真菌活性[12-13]。麦角甾醇是真菌细胞膜的重要成分,能调节真菌细胞膜的流动性和细胞分裂[5]。厚朴酚是厚朴的主要单体之一,研究显示其可显著降低白念珠菌中麦角甾醇的含量,还可减少细胞膜上的转运蛋白对氟康唑的外排,从而增强氟康唑的抗真菌作用[14]。薄荷精油中的化合物,如薄荷醇、薄荷酮和香芹酮,可通过降低细胞膜中麦角甾醇的含量来抑制白色念珠菌的生长[15]。香芹酚和百里酚也可降低麦角甾醇的水平,影响抗氧化防御系统,增加膜通透性,阻断外排泵,从而恢复唑类的抗真菌敏感性[14, 16]

1.2 靶向细胞壁

真菌细胞壁具有较高的机械强度,能为细胞提供保护性屏障,抵抗各种环境压力,如冷、热、渗透压力等[17]。真菌细胞壁主要由葡聚糖、甘露糖和几丁质等组成,其中几丁质维持真菌细胞壁的机械强度,保持细胞壁的完整性。从地钱科提取出来的羽苔素E能抑制几丁质合成酶1(chitin synthase 1,CHS1)基因的表达,阻止真菌合成几丁质,从而达到破坏真菌细胞壁的目的[18]。真菌细胞壁的另一组分葡聚糖是宿主识别的病原相关分子模式,而棘白菌素能抑制真菌β -1, 3-葡聚糖的合成,获得杀菌效果[19]。最近一项研究显示,鱼腥草素钠可能通过干扰β -1, 3-葡聚糖的合成和运输而与氟康唑联用发挥协同作用[20]

1.3 靶向线粒体

能量供应和代谢产物对于真菌的生存和生长及主要细胞事件(如白念珠菌从酵母态到菌丝态的转变)不可或缺。小檗碱能诱导真菌线粒体功能障碍和增加活性氧(reactive oxygen species, ROS)生成,与氟康唑联用具有协同作用[10, 21]。此外,小檗碱能破坏白念珠菌细胞壁的完整性[22],还可抑制白念珠菌耐药基因CDR1的过度表达[23]。从姜黄中提取的姜黄素对许多真菌具有抗真菌活性[24-25],且其可单独或与唑类和多烯类药物联用发挥协同作用,增加白念珠菌细胞的活性氧生成并促使其凋亡[26-27]。有报道称,从水飞蓟中分离的最著名和最有效的化合物——水飞蓟宾,可诱导白念珠菌细胞中与线粒体Ca2+内流相关的凋亡[28],且其安全性已通过临床试验证明,水飞蓟宾成为抗真菌感染的一个非常有希望的候选药物。

1.4 靶向真菌毒力因子

真菌通过众多毒力因子来帮助其对宿主的定植和感染[29]。白念珠菌从酵母态向菌丝态的转化是主要毒力因子之一,是其在宿主组织中定植、入侵/渗透、毒力释放、免疫逃避和存活的主要影响因素[19]。厚朴酚可诱导白念珠菌Ras1-cAMP-Efg1信号通路的成分(如RAS1、EFG1、TEC1和CDC35)下调,以及菌丝特异性基因ECE1、HWP1和ALS3的表达水平下降,进而抑制白色念珠菌从酵母态向菌丝态的转化[30-31]。姜黄素可通过靶向转录抑制因子TUP1而抑制白念珠菌从酵母态向菌丝态的转化[32]

真菌生物膜是黏附在固体表面的由不同类型细胞和细胞外基质组成的群落,是真菌抵抗化学和物理损伤的重要毒力因子[33]。真菌生物膜通常形成于植入的医疗设备(如导管、起搏器等)上以及宿主表面。许多植物的提取物具有抑制白念珠菌生物膜形成的能力,如茶多酚[34]、桂皮醇提物[35]、芫荽和罗勒属植物精油[36-38]等。小檗碱、百里酚、黄芩素等许多天然产物活性单体都可单独或与氟康唑等抗真菌药物协同抑制真菌生物膜的形成[10, 39-41]

1.5 与现有抗真菌药物的协同作用

由于耐药和多重耐药真菌的出现,现有抗真菌药物的治疗效果有限,而增加药物浓度则会导致毒副作用加重和治疗成本升高[42]。鉴于目前新的抗真菌药物研发进展缓慢,现有抗真菌药物联用成为有效且实用的替代方法。许多研究报道了天然产物与现有抗真菌药物具有协同效应,包括植物精油(薄荷属、天竺葵属、葱属、牛至属、百里香属等)[43],以及天然产物单体(小檗碱、姜黄素、百里酚、丁香酚、厚朴酚、大蒜素等),它们与唑类、多烯类药物联用具有协同作用[44]。最近一项研究探讨了5种天然产物单体(鱼腥草素钠、肉桂醛、小檗碱、药根碱和巴马汀)联用对白念珠菌和耳道念珠菌的抑制作用[22]。其结果显示,鱼腥草素钠+巴马汀、肉桂醛+小檗碱、肉桂醛+药根碱组合对白念珠菌的协同效果最好,肉桂醛+巴马汀、肉桂醛+药根碱组合对耳道念珠菌的协同效果最好,这种抗真菌协同作用可能是由于组合内的药物针对不同的药物靶标而获得的。还有研究发现,血根碱和白屈菜红碱联用能抑制白念珠菌和新生隐球菌的生长,且具有协同作用[45]。两者联用能破坏真菌细胞膜的完整性,抑制生物膜的形成,因此具有开发为抗真菌药物的潜能。

2 天然产物单体成分

目前,从天然产物中提取了20多种结构新颖、活性强、不良反应小的活性单体成分,包括醌类、黄酮类、萜类和生物碱等,这些单体成分经过实验证明具有体内或体外抑制真菌生长或杀菌的能力(见表 1)。体外实验评估抑菌效果大多采用微量稀释法,实验对象大多为白念珠菌或临床分离的耐氟康唑白念珠菌,少数为新生隐球菌或曲霉。体外研究大多聚焦于天然产物单体成分对真菌毒力因子的影响,如:大黄素、姜黄素、厚朴酚、小檗碱、苦参碱等能抑制白念珠菌从酵母态到菌丝态的转换;红紫素、丁香酚、土荆皮乙酸、百里酚、薄荷醇等能抑制真菌生物膜的形成;香芹酚、薄荷醇、芳樟醇、血根碱、没食子酸等能破坏细胞膜等。然而,评估天然产物单体成分体内抑菌效果的报道相对较少。有研究使用秀丽隐杆线虫模型来测试天然产物单体成分的潜在抗真菌活性,结果显示2种皂苷能提高被白念珠菌感染的线虫的存活率,具有体内抗真菌活性[46]。大部分活性单体成分提取自中药药用植物,如提取自姜黄的姜黄素[47]和提取自水飞蓟的水飞蓟宾[48]等,提示传统中药依然是开发抗真菌感染药物的巨大宝库。

表 1 天然产物活性单体成分对病原真菌的抑制作用 Tab. 1 Inhibitory effect of monomers of natural products on pathogenic fungi
化学分类 单体名称 来源 MIC (μg/mL) 实验对象 抑菌机制
醌类 大黄[53-54] 大黄 64~128 新生隐球菌 抑制生物膜和菌丝发育
12.5 白念珠菌
红紫素[55] 茜草根 2.56~5.12 白念珠菌 抑制生物膜形成
2.56 光滑念珠菌
紫草[56] 紫草 8 白念珠菌 诱导ROS产生,降低线粒体膜电位
8 光滑念珠菌
8 新生隐球菌
>64 烟曲霉
epi-ilimaquinone[49] 海绵Hippospongia sp. 125 白念珠菌 -
萜类 厚朴酚[57-58] 厚朴 64 白念珠菌 抑制酵母态到菌丝态的转化;抑制生物膜形成;抑制药物外排泵的表达
16 光滑念珠菌
>200 新生隐球菌
丁香酚[59] 丁香 82.68~1 325 白念珠菌 抑制生物膜形成
331.25~1 325 光滑念珠菌
土槿皮乙酸[60-61] 土槿皮 8~16 热带念珠菌 抑制生物膜形成
32~128 白念珠菌
香芹酚[62] 百里香 128 白念珠菌 降低麦角甾醇含量,破坏细胞膜
16~512 光滑念珠菌
百里酚[62-63] 百里香 32~256 白念珠菌 降低麦角甾醇含量,破坏细胞膜;抑制生物膜形成
32~128 光滑念珠菌
20~51 新生隐球菌
薄荷醇[64] 薄荷 1.42~45.6 白念珠菌 降低麦角甾醇含量,破坏细胞膜;抑制生物膜形成
0.17~2.85 光滑念珠菌
芳樟醇[65] 天竺葵 8~32 白念珠菌 降低麦角甾醇含量,破坏细胞膜;抑制生物膜形成
16 光滑念珠菌
紫苏醇[66] 薄荷 350 白念珠菌 抑制乙醛酸循环
黄酮类 姜黄[47, 67] 姜黄 4~32 白念珠菌 诱导ROS产生;抑制酵母态到菌丝态的转化;抑制生物膜形成
64 烟曲霉
4~64 格特隐球菌
黄酮类 姜黄 姜黄32~64 光滑念珠菌
64 耳道念珠菌
黄芩苷[68] 黄芩 500 白念珠菌 诱导细胞凋亡
水飞蓟宾[48] 水飞蓟 30~1 200 白念珠菌 诱导细胞凋亡
甘草查尔酮A[41] 甘草 62.5~150 白念珠菌 抑制酵母态到菌丝的转化
芹菜[69] 欧芹 5 白念珠菌 抑制乙醛酸循环;抑制菌丝生长;抑制生物膜形成
槲皮[47] 槲皮 16~32 白念珠菌 抑制生物膜形成;诱导法尼醇产生
64 烟曲霉
64 光滑念珠菌
64 耳道念珠菌
生物碱 汉防己甲素[70] 汉防己 16~64 白念珠菌 抑制药物外排泵;下调MDR1、FLU1、CDR1和CDR2基因表达
小檗碱[71-73] 小檗属 4~256 烟曲霉 抑制菌丝形态转换;抑制生物膜形成;破坏细胞壁完整性
8~16 新生隐球菌
17.75 白念珠菌
苦参碱[74] 苦参、山豆根 1 000 白念珠菌 抑制菌丝形态转换
血根碱[45] 博落回 4 白念珠菌 抑制生物膜形成;破坏细胞膜
64 新生隐球菌
白屈菜红碱[45] 白屈菜 4 白念珠菌 抑制生物膜形成;破坏细胞膜
64 新生隐球菌
多酚类 没食子酸[75] 五倍子 12.5 白念珠菌 抑制麦角甾醇合成
100 光滑念珠菌
醛类 肉桂醛[56, 59, 62] 肉桂 20.48~163.80 白念珠菌 抑制生物膜形成;抑制菌丝形态转换
40.95~163.80 光滑念珠菌
1.37 新生隐球菌
鱼腥草素钠[22] 鱼腥草 128 白念珠菌 干扰β-1, 3-葡聚糖合成与运输
64 耳道念珠菌
多肽 Aurantoside[4] 海绵Theonella swinhoei 0.125~0.5 白念珠菌 -
14 新生隐球菌
大环内酯 羽苔素E[76] 地钱科 16~32 白念珠菌 抑制CHS1表达;诱导ROS产生

值得一提的是,随着抗真菌药物研发的深入,海洋来源的天然产物活性单体作为新的抗真菌候选药物获得了极大关注[4]。其中,海绵被认为是具有抗真菌特性的次级代谢产物的主要来源。从斐济海绵Hippospongia sp.中分离出的一种倍半萜醌epi-ilimaquinone,能抑制耐两性霉素B的白念珠菌的生长[49],从隋氏蒂壳海绵(Theonella swinhoei)中分离的多肽Aurantoside则对白念珠菌和新生隐球菌都有抑制作用,具有良好的广谱抗真菌活性[4]

3 天然产物提取物

采用植物制备粗提取物是发现抗真菌药物的第一步,一般通过水提或醇提的方式获得,也可通过蒸馏从植物中分离精油[50]。国内外均报道了一些在植物不同部位经水提或乙醇提取的粗提物具有抗真菌活性[51](见表 2)。吴晶[52]采用75%乙醇超声提取中药有效成分,筛查了1 557味中药的粗提物对白念珠菌、新生隐球菌和烟曲霉等常见侵袭性真菌的抑制作用,共发现453味中药的粗提物具有抗真菌活性,并发现重楼、粉萆薢、白薇、穿山龙、藜芦、羌活等提取物在低浓度下即能完全抑制白念珠菌的菌丝生长,具有很强的抗真菌作用。宫毓静等[90]采用半固体药基混合法测试了164种单味药的95%乙醇提取物的抗真菌活性,结果显示牡丹皮、土荆皮等9种单味药的粗提物对白念珠菌具有明显的抑制作用。

表 2 不同植物来源提取物的抗真菌研究 Tab. 2 Antifungal effects of extracts from different plants
实验对象 粗提物 提取方法
白念珠菌 丁香、牛至、百里香、茴香、迷迭香、芫荽、柴桂、香绵菊[25, 77-81] 精油
大蒜、芫荽、骆驼蓬[82-84] 甲醇提取
肉桂[85-86] 水提物
乙醚提取
芫荽[84] 乙醇水提取
辣椒[87] 正己烷提取
嘉兰百合[86] 正丁醇提取
月桂[89] 水提物
新生隐球菌 丁香、小茴香、天竺葵、薰衣草、香蜂叶、牛至、松树、鼠尾草、百里香[77] 精油

通过蒸馏分离的植物精油具有更强的抗真菌活性,有学者对其组成和抗真菌活性进行了深入研究[91]。从丁香、牛至、百里香和肉桂中提取的精油对真菌具有显著的抑制作用,这些植物精油中的酚类化合物(香芹酚和百里香酚)能破坏真菌的细胞膜,抑制真菌生长[25]。植物精油可能通过破坏真菌细胞壁和质膜来达到杀菌效果,有研究表明精油可用来治疗浅表真菌感染,但对侵袭性真菌感染疗效不佳,这可能是由植物精油在人体肠道中吸收较差导致的[92]。因此,将植物精油与现有抗真菌药物联用以治疗侵袭性真菌感染可能有更好的治疗效果。

通过天然产物提取物筛选抗真菌药物是经济、简便的初步方法,对进一步的研究工作具有一定的指导意义。然而,由于粗提取物中的化学成分不同,提取物的生物活性可能无法在实验中重现。此外,获得提取物的溶剂和提取方法也可能导致某些化合物的损失。

4 结语

综上所述,许多天然化合物可通过不同的机制发挥抗真菌活性,成为开发抗真菌药物的巨大资源库。尽管针对天然产物活性单体成分已有众多深入的研究,但针对天然产物粗提物的研究大多只局限于用体外药敏试验来检测抗真菌活性,未深入研究其抗真菌机制,且大多数研究仅有体外实验数据,动物实验和临床研究较少,已开展的临床研究主要为治疗浅部真菌病,研究范围小,周期较短。因此,基于天然产物的抗真菌药物研发须更加深入。相信随着技术的进步和人们不断的关注,基于天然产物开发新型抗真菌药物的进程会越来越快。

参考文献
[1]
Butts A, Krysan DJ. Antifungal drug discovery: something old and something new[J]. PLoS Pathog, 2012, 8(9): e1002870. [DOI]
[2]
Dettori M, Riccardi N, Canetti D, Antonello RM, Piana AF, Palmieri A, Castiglia P, Azara AA, Masia MD, Porcu A, Ginesu GC, Cossu ML, Conti M, Pirina P, Fois A, Maida I, Madeddu G, Babudieri S, Saderi L, Sotgiu G. Infections in lung transplanted patients: a review[J]. Pulmonology, 2022: S2531-0437(22)00118-0. doi: 10.1016/j.pulmoe.2022.04.010.
[3]
Casadevall A. Immunity to invasive fungal diseases[J]. Annu Rev Immunol, 2022, 40: 121-141. [DOI]
[4]
Cardoso J, Nakayama DG, Sousa E, Pinto E. Marine-derived compounds and prospects for their antifungal application[J]. Molecules, 2020, 25(24): 5856. [DOI]
[5]
Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S, Bruggemann R. Antifungal drugs: what brings the future?[J]. Med Mycol, 2019, 57(Supplement_3): S328-S343. [DOI]
[6]
Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management[J]. Lancet Infect Dis, 2017, 17(12): e383-e392. [DOI]
[7]
Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science, 2018, 360(6390): 739-742. [DOI]
[8]
Wiederhold NP. Antifungal resistance: current trends and future strategies to combat[J]. Infect Drug Resist, 2017, 10: 249-259. [DOI]
[9]
Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses[J]. Clin Infect Dis, 2017, 64(2): 134-140. [DOI]
[10]
Liu X, Ma Z, Zhang J, Yang L. Antifungal compounds against Candida infections from traditional Chinese medicine[J]. Biomed Res Int, 2017, 2017: 4614183. [DOI]
[11]
Moloney MG. Natural products as a source for novel antibiotics[J]. Trends Pharmacol Sci, 2016, 37(8): 689-701. [DOI]
[12]
Hwang B, Cho J, Hwang IS, Jin HG, Woo ER, Lee DG. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans[J]. Biochem Biophys Res Commun, 2011, 410(3): 489-493. [DOI]
[13]
Hwang B, Lee J, Liu QH, Woo ER, Lee DG. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii[J]. Molecules, 2010, 15(5): 3507-3516. [DOI]
[14]
Sun LM, Liao K, Liang S, Yu PH, Wang DY. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans[J]. J Appl Microbiol, 2015, 118(4): 826-838. [DOI]
[15]
Samber N, Khan A, Varma A, Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components[J]. Pharm Biol, 2015, 53(10): 1496-1504. [DOI]
[16]
Khan A, Ahmad A, Ahmad Khan L, Padoa CJ, van Vuuren S, Manzoor N. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans[J]. Microb Pathog, 2015, 80: 50-56. [DOI]
[17]
Childers DS, Avelar GM, Bain JM, Larcombe DE, Pradhan A, Budge S, Heaney H, Brown AJP. Impact of the environment upon the Candida albicans cell wall and resultant effects upon immune surveillance[J]. Curr Top Microbiol Immunol, 2020, 425: 297-330. [PubMed]
[18]
Sultan T, Ali SA. Psoralea corylifolia extracts stimulate cholinergic-like psoralen receptors of tadpole-tail melanophores, leading to skin darkening[J]. J Recept Signal Transduct Res, 2011, 31(1): 39-44. [PubMed]
[19]
Wijnants S, Vreys J, Van Dijck P. Interesting antifungal drug targets in the central metabolism of Candida albicans[J]. Trends Pharmacol Sci, 2022, 43(1): 69-79. [DOI]
[20]
Shao J, Cui Y, Zhang M, Wang T, Wu D, Wang C. Synergistic in vitro activity of sodium houttuyfonate with fluconazole against clinical Candida albicans strains under planktonic growing conditions[J]. Pharm Biol, 2017, 55(1): 355-359. [DOI]
[21]
Augostine CR, Avery SV. Discovery of natural products with antifungal potential through combinatorial synergy[J]. Front Microbiol, 2022, 13: 866840. [DOI]
[22]
Liu J, Li Q, Wang C, Shao J, Wang T, Wu D, Ma K, Yan G, Yin D. Antifungal evaluation of traditional herbal monomers and their potential for inducing cell wall remodeling in Candida albicans and Candida auris[J]. Biofouling, 2020, 36(3): 319-331. [DOI]
[23]
Yong J, Zu R, Huang X, Ge Y, Li Y. Synergistic effect of berberine hydrochloride and fluconazole against Candida albicans resistant isolates[J]. Front Microbiol, 2020, 11: 1498. [DOI]
[24]
Khan N, Shreaz S, Bhatia R, Ahmad SI, Muralidhar S, Manzoor N, Khan LA. Anticandidal activity of curcumin and methyl cinnamaldehyde[J]. Fitoterapia, 2012, 83(3): 434-440. [DOI]
[25]
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural compounds: a hopeful promise as an antibiofilm agent against Candida species[J]. Front Pharmacol, 2022, 13: 917787. [DOI]
[26]
Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis[J]. FEMS Yeast Res, 2010, 10(5): 570-578. [PubMed]
[27]
Xue B, Yu Y, Peng G, Sun M, Lv P, Li X. Amphotericin B and curcumin co-loaded porous microparticles as a sustained release system against Candida albicans[J]. Molecules, 2022, 27(10): 3079. [DOI]
[28]
Yun DG, Lee DG. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans[J]. Int J Biochem Cell Biol, 2016, 80: 1-9. [DOI]
[29]
Siscar-Lewin S, Hube B, Brunke S. Emergence and evolution of virulence in human pathogenic fungi[J]. Trends Microbiol, 2022, 30(7): 693-704. [DOI]
[30]
Sun L, Liao K, Wang D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans[J]. PLoS One, 2015, 10(2): e0117695. [DOI]
[31]
Xie Y, Hua H, Zhou P. Magnolol as a potent antifungal agent inhibits Candida albicans virulence factors via the PKC and Cek1 MAPK signaling pathways[J]. Front Cell Infect Microbiol, 2022, 12: 935322. [DOI]
[32]
Sharma M, Manoharlal R, Puri N, Prasad R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans[J]. Biosci Rep, 2010, 30(6): 391-404. [DOI]
[33]
Lohse M B, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single-and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018, 16(1): 19-31. [DOI]
[34]
Farkash Y, Feldman M, Ginsburg I, Steinberg D, Shalish M. Polyphenols inhibit Candida albicans and Streptococcus mutans biofilm formation[J]. Dent J (Basel), 2019, 7(2): 42. [DOI]
[35]
Mishra P, Gupta P, Pruthi V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119: 111450. [DOI]
[36]
Furletti VF, Teixeira IP, Obando-Pereda G, Mardegan RC, Sartoratto A, Figueira GM, Duarte RM, Rehder VL, Duarte MC, Hofling JF. Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation[J]. Evid Based Complement Alternat Med, 2011, 2011: 985832. [DOI]
[37]
Thaweboon S, Thaweboon B. In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms[J]. Southeast Asian J Trop Med Public Health, 2009, 40(5): 1025-1033. [PubMed]
[38]
Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemdé RT. Anti-Candida albicans natural products, sources of new antifungal drugs: a review[J]. J Mycol Med, 2017, 27(1): 1-19. [DOI]
[39]
Khan MS, Ahmad I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms[J]. J Antimicrob Chemother, 2012, 67(3): 618-621. [DOI]
[40]
Xie Y, Liu X, Zhou P. In vitro antifungal effects of berberine against Candida spp. in planktonic and biofilm conditions[J]. Drug Des Devel Ther, 2020, 14: 87-101. [DOI]
[41]
Seleem D, Benso B, Noguti J, Pardi V, Murata RM. In vitro and in vivo antifungal activity of lichochalcone-A against Candida albicans biofilms[J]. PLoS One, 2016, 11(6): e0157188. [DOI]
[42]
Vitale RG. Role of antifungal combinations in difficult to treat Candida infections[J]. J Fungi (Basel), 2021, 7(9): 731. [DOI]
[43]
Bhattacharya R, Rolta R, Dev K, Sourirajan A. Synergistic potential of essential oils with antibiotics to combat fungal pathogens: present status and future perspectives[J]. Phytother Res, 2021, 35(11): 6089-6100. [DOI]
[44]
Herman A, Herman AP. Herbal products and their active constituents used alone and in combination with antifungal drugs against drug-resistant Candida sp.[J]. Antibiotics (Basel), 2021, 10(6): 655. [DOI]
[45]
Qian W, Yang M, Li X, Sun Z, Li Y, Wang X, Wang T. Anti-microbial and anti-biofilm activities of combined chelerythrine-sanguinarine and mode of action against Candida albicans and Cryptococcus neoformans in vitro[J]. Colloids Surf B Biointerfaces, 2020, 191: 111003. [DOI]
[46]
Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E. Characterization of plant-derived saponin natural products against Candida albicans[J]. ACS Chem Biol, 2010, 5(3): 321-332. [DOI]
[47]
Sadeghi-Ghadi Z, Vaezi A, Ahangarkani F, Ilkit M, Ebrahimnejad P, Badali H. Potent in vitro activity of curcumin and quercetin co-encapsulated in nanovesicles without hyaluronan against Aspergillus and Candida isolates[J]. J Mycol Med, 2020, 30(4): 101014. [DOI]
[48]
Janeczko M, Kochanowicz E. Silymarin, a popular dietary supplement shows anti-Candida activity[J]. Antibiotics (Basel), 2019, 8(4): 206. [DOI]
[49]
Kumar R, Subramani R, Aalbersberg W. Three bioactive sesquiterpene quinones from the Fijian marine sponge of the genus Hippospongia[J]. Nat Prod Res, 2013, 27(16): 1488-1491. [DOI]
[50]
Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human health care[J]. Curr Med Chem, 2019, 26(29): 5501-5541. [DOI]
[51]
Negri M, Salci TP, Shinobu-Mesquita CS, Capoci IR, Svidzinski TI, Kioshima ES. Early state research on antifungal natural products[J]. Molecules, 2014, 19(3): 2925-2956. [DOI]
[52]
吴晶. 中药抗真菌的活性筛选及作用机制研究[D/OL]. 上海: 中国人民解放军海军军医大学, 2017[2022-02-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201801&filename=1017208259.nh&uniplatform=NZKPT&v=xzoae-AEc6ooagIg3g_vⅡ59Iil4-CYm77CBByeq8SMUCdHbpX7Fei-9HpRHtg5N.
[53]
Brilhante RSN, Araújo GDS, Fonseca XMQC, Guedes GMM, Aguiar L, Castelo-Branco DSCM, Cordeiro RA, Sidrim JJC, Pereira Neto WA, Rocha MFG. Antifungal effect of anthraquinones against Cryptococcus neoformans: detection of synergism with amphotericin B[J]. Med Mycol, 2020, 14: myaa081. [DOI]
[54]
Janeczko M. Emodin reduces the activity of (1, 3)-beta-D-glucan synthase from Candida albicans and does not interact with caspofungin[J]. Pol J Microbiol, 2018, 67(4): 463-470. [DOI]
[55]
Kang K, Fong WP, Tsang PW. Novel antifungal activity of purpurin against Candida species in vitro[J]. Med Mycol, 2010, 48(7): 904-911. [DOI]
[56]
Sasaki K, Abe H, Yoshizaki F. In vitro antifungal activity of naphthoquinone derivatives[J]. Biol Pharm Bull, 2002, 25(5): 669-670. [DOI]
[57]
Behbehani J, Shreaz S, Irshad M, Karched M. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates[J]. Microb Pathog, 2017, 113: 209-217. [DOI]
[58]
Bang KH, Kim YK, Min BS, Na MK, Rhee YH, Lee JP, Bae KH. Antifungal activity of magnolol and honokiol[J]. Arch Pharm Res, 2000, 23(1): 46-49. [DOI]
[59]
Saracino IM, Foschi C, Pavoni M, Spigarelli R, Valerii MC, Spisni E. Antifungal activity of natural compounds vs. Candida spp. : a mixture of cinnamaldehyde and eugenol shows promising in vitro results[J]. Antibiotics, 2022, 11(1): 73. [DOI]
[60]
Li Z, Yin H, Chen W, Jiang C, Hu J, Xue Y, Yao D, Peng Y, Hu X. Synergistic effect of pseudolaric acid B with fluconazole against resistant isolates and biofilm of Candida tropicalis[J]. Infect Drug Resist, 2020, 13: 2733-2743. [DOI]
[61]
谢凌峰, 贺莉雅, 王献哲, 严佳宝, 袁娟娜, 范瑞强, 谢婷. 中药单体成分抗白念珠菌实验的研究进展[J]. 皮肤性病诊疗学杂志, 2021, 28(6): 524-528. [DOI]
[62]
Miranda-Cadena K, Marcos-Arias C, Mateo E, Aguirre-Urizar JM, Quindós G, Eraso E. In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms[J]. Biomed Pharmacother, 2021, 143: 112218. [DOI]
[63]
Teixeira APC, Nóbrega RO, Lima EO, Araújo WO, Lima IO. Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans[J]. Nat Prod Res, 2020, 34(18): 2630-2633. [DOI]
[64]
Iraji A, Yazdanpanah S, Alizadeh F, Mirzamohammadi S, Ghasemi Y, Pakshir K, Yang Y, Zomorodian K. Screening the antifungal activities of monoterpenes and their isomers against Candida species[J]. J Appl Microbiol, 2020, 129(6): 1541-1551. [DOI]
[65]
Hsu CC, Lai WL, Chuang KC, Lee MH, Tsai YC. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans[J]. Med Mycol, 2013, 51(5): 473-482. [DOI]
[66]
Ansari MA, Fatima Z, Hameed S. Anticandidal effect and mechanisms of monoterpenoid, perillyl alcohol against Candida albicans[J]. PLoS One, 2016, 11(9): e0162465. [DOI]
[67]
da Silva DL, Magalhães TF, Dos Santos JR, de Paula TP, Modolo LV, de Fátima A, Buzanello Martins CV, Santos DA, de Resende-Stoianoff MA. Curcumin enhances the activity of fluconazole against Cryptococcus gattii-induced cryptococcosis infection in mice[J]. J Appl Microbiol, 2016, 120(1): 41-48. [DOI]
[68]
Wang T, Shi G, Shao J, Wu D, Yan Y, Zhang M, Cui Y, Wang C. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction[J]. Microb Pathog, 2015, 87: 21-29. [DOI]
[69]
Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation[J]. FEMS Yeast Res, 2018, 18(1). [DOI]
[70]
Bhagya N, Chandrashekar KR. Tetrandrine-a molecule of wide bioactivity[J]. Phytochemistry, 2016, 125: 5-13. [DOI]
[71]
[72]
[73]
Zorić N, Kosalec I, Tomić S, Bobnjarić I, Jug M, Vlainić T, Vlainić J. Membrane of Candida albicans as a target of berberine[J]. BMC Complement Altern Med, 2017, 17(1): 268. [DOI]
[74]
Shao J, Wang T, Yan Y, Shi G, Cheng H, Wu D, Wang C. Matrine reduces yeast-to-hypha transition and resistance of a fluconazole-resistant strain of Candida albicans[J]. J Appl Microbiol, 2014, 117(3): 618-626. [DOI]
[75]
Li ZJ, Liu M, Dawuti G, Dou Q, Ma Y, Liu HG, Aibai S. Antifungal activity of gallic acid in vitro and in vivo[J]. Phytother Res, 2017, 31(7): 1039-1045. [DOI]
[76]
Wu XZ, Chang WQ, Cheng AX, Sun LM, Lou HX. Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway[J]. Biochim Biophys Acta, 2010, 1800(4): 439-447. [DOI]
[77]
Mandras N, Roana J, Scalas D, Del Re S, Cavallo L, Ghisetti V, Tullio V. The inhibition of non-albicans Candida species and uncommon yeast pathogens by selected essential oils and their major compounds[J]. Molecules, 2021, 26(16): 4937. [DOI]
[78]
Djeddi S, Djebile K, Hadjbourega G, Achour Z, Argyropoulou C, Skaltsa H. In vitro antimicrobial properties and chemical composition of Santolina chamaecyparissus essential oil from Algeria[J]. Nat Prod Commun, 2012, 7(7): 937-940. [PubMed]
[79]
Pandey AK, Mishra AK, Mishra A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala[J]. Cell Mol Biol (Noisy-le-grand), 2012, 58(1): 142-147. [PubMed]
[80]
Freires Ide A, Murata RM, Furletti VF, Sartoratto A, Alencar SM, Figueira GM, de Oliveira Rodrigues JA, Duarte MC, Rosalen PL. Coriandrum sativum L. (Coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression[J]. PLoS One, 2014, 9(6): e99086. [DOI]
[81]
Abd El Mageed MA, Mansour AF, El Massry KF, Ramadan MM, Shaheen MS, Shaaban H. Effect of microwaves on essential oils of coriander and cumin seeds and on their antioxidant and antimicrobial activities[J]. J Essent Oil Bearing Plants, 2012, 15(4): 614-627. [DOI]
[82]
Melvin Joe M, Jayachitra J, Vijayapriya M. Antimicrobial activity of some common spices against certain human pathogens[J]. J Med Plants Res, 2009, 3(11): 1134-1136.
[83]
Ali NH, Faizi S, Kazmi SU. Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan[J]. Pharm Biol, 2011, 49(8): 833-839. [DOI]
[84]
Yakout SM, Abd-Alrahman SH, Mostafa A, Salem-Bekhit MM. Antimicrobial effect of seed ethanolic extract of coriander[J]. J Pure Appl Microbiol, 2013, 7(Spl. Edn.): 459-463.
[85]
Hussien J, Teshale C, Mohammed J. Assessment of the antimicrobial effects of some Ethiopian aromatic spice and herb hydrosols[J]. Int J Pharmacol, 2011, 7(5): 635-640. [DOI]
[86]
Aǧaoǧlu S, Dostbil N, Alemdar S. Antimicrobial activity of some spices used in the meat industry[J]. Bull Vet Inst Pulawy, 2007, 51: 53-57.
[87]
Gurnani N, Gupta M, Shrivastava R, Mehta D, Mehta BK. Effect of extraction methods on yield, phytochemical constituents, antibacterial and antifungal activity of Capsicum frutescens L[J]. 2016, 7(1): 32-39.
[88]
Khan H, Khan MA, Mahmood T, Choudhary MI. Antimicrobial activities of Gloriosa superba Linn (Colchicaceae) extracts[J]. J Enzyme Inhib Med Chem, 2008, 23(6): 855-859. [DOI]
[89]
Ceyhan N, Keskin D, Uǧur A. Antimicrobial activities of different extracts of eight plant species from four different family against some pathogenic microorganisms[J]. J Food Agric Environ, 2012, 10(1): 193-197.
[90]
宫毓静, 安汝国, 虞慧, 王理达, 郑俊华, 果德安. 164种中药乙醇提取物抗真菌作用研究[J]. 中草药, 2002, 33(1): 44-49. [CNKI]
[91]
Silva RAD, Antonieti FMPM, Röder DVDB, Pedroso RDS. Essential oils of Melaleuca, Citrus, Cupressus, and Litsea for the management of infections caused by Candida species: a systematic review[J]. Pharmaceutics, 2021, 13(10): 1700. [DOI]
[92]
Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, Shalla AH, Rather MA. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens[J]. Microb Pathog, 2019, 134: 103580. [DOI]

文章信息

吴显伟, 田丽, 胡转楠, 周伟, 邱磊, 张顺先, 张少言, 鹿振辉
WU Xianwei, TIAN Li, HU Zhuannan, ZHOU Wei, QIU Lei, ZHANG Shunxian, ZHANG Shaoyan, LU Zhenhui
天然产物抗病原真菌的研究进展
Research on antifungal activity of natural products
微生物与感染, 2022, 17(5): 317-326.
Journal of Microbes and Infections, 2022, 17(5): 317-326.
通信作者
鹿振辉
E-mail:Dr_luzh@shutcm.edu.cn
基金项目
上海中医药大学预算内项目(2021LK048);上海中医药大学附属龙华医院国家龙医学者育苗计划(Y21012)

工作空间