2. 深圳市第三人民医院感染科,国家传染病临床研究中心,广东 深圳 518000
2. Department of Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, Shenzhen 518000, Guangdong Province, China
截至2023年6月7日,全球确诊由严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)引起的新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)病例已超过7.67亿,死亡病例已达到694万[1]。死亡并不是SARS-CoV-2感染唯一重要的负面结局,越来越多的证据表明病情轻的患者在康复期也可能会存在持续的症状,严重者可致残,进而影响患者的生活质量,这被称为长新冠(long COVID)或后COVID-19综合征。全面了解患者在康复后的长期健康状况具有重要意义,可以为COVID-19康复患者的随访、管理和干预提供科学依据。本文将对长新冠的定义、临床表现、机制及治疗进展进行综述。
1 长新冠的定义SARS-CoV-2感染后可累及多个器官,主要表现为呼吸、心血管、神经等系统的症状,在感染后期仍有部分患者遗留或继发新的症状。医学界将这些症状称为长新冠,其具体定义是:在SARS-CoV-2感染期间或之后出现的持续时间超过12周的症状和体征,包括极度疲劳、肌肉和关节疼痛、呼吸困难、心悸、味觉和嗅觉丧失或改变、肠胃不适,以及注意力、记忆和认知方面的问题等各种各样的症状,且以上症状不能用其他诊断解释[2]。
2 长新冠的临床表现及机制研究 2.1 呼吸系统 2.1.1 临床表现呼吸系统是长新冠最常涉及的人体系统。COVID-19患者在恢复期早期最常见的遗留症状是呼吸困难,且在感染后60~100 d的临床表现中占42%~66%[3-5]。感染3个月后,患者最常出现的持续呼吸道症状包括慢性咳嗽、气短、呼吸困难、胸痛等,部分患者甚至可以持续1年以上。感染6个月时,约25%的患者的6分钟步行距离中位数低于正常参考值,这一比例与严重急性呼吸综合征(severe acute respiratory syndrome,SARS)和中东呼吸综合征(Middle East respiratory syndrome,MERS)的幸存者相似[6]。气体弥散功能障碍也是COVID-19恢复期最常见的表现,通常出现在最初肺部受累严重和肺炎的患者中[6-8],其下降程度与SARS-CoV-2感染急性期的严重程度直接相关[9],出院6个月内弥散功能障碍的报道患病率为16%~52%[6, 10-12],甚至在出院12个月后仍有1/3的患者表现出肺内一氧化碳弥散量降低[13]。
2.1.2 影像表现患者急性期的胸部计算机体层扫描(computed tomography,CT)主要表现为肺部毛玻璃样改变和实变,累及多肺叶,呈外周和弥漫性分布[14-15];在恢复期,肺实变会被缓慢吸收,肺实质带等纤维化样表现增加[16]。以往治疗SARS和MERS患者的经验表明,影像学异常表现会随着时间的推移而改善,但肺纤维化可能会持续数月甚至数年[17-18]。Fabbri等[19]通过荟萃分析发现,在平均3个月的随访中,50%的患者肺部有炎症改变,29%的患者肺部有纤维化改变,随访时间与炎症变化显著相关,但与纤维化变化无明显的相关性。另一项荟萃分析也发现,在随访12个月时,患者肺部限制性损伤的发生率较低(与6个月时相比),持续性磨玻璃样阴影的合并患病率为34%,肺纤维化的合并患病率为32%[20]。
因此在长期随访中,须重点关注COVID-19患者的持续呼吸道症状,以及须对患者进行6分钟步行试验、肺功能测试和胸部CT等检查,以评估其肺功能和肺纤维化的进展或恢复情况。
2.2 心血管系统 2.2.1 长新冠相关心血管事件研究发现SARS-CoV2感染显著增加了心血管并发症发生的风险,如心律失常、心肌炎、心包炎、缺血性心脏病、心力衰竭和血栓栓塞性疾病等[21]。德国一项队列研究显示,多达78%的COVID-19患者报告心脏磁共振成像异常;康复2个月后,100例患者中的71例出现肌钙蛋白水平升高;20%的患者出现了胸痛、心悸症状[22]。此外,亦有在COVID-19轻—重症患者中发现了不同程度心脏损伤的报告[23]。美国对一项大规模人群(超15万人)随访1年的数据进行分析,发现既往感染SARS-CoV-2使得任意心血管事件的发生风险明显增加,其中血栓性疾病的风险增加高达139%,心脏或心包炎症性疾病风险增加102%,心律失常、缺血性心脏病、心衰风险增加约70%[24]。
2.2.2 机制研究对COVID-19合并心脏病患者死亡的病因研究显示,急性心力衰竭是仅次于呼吸衰竭的第二大常见死亡原因,还有少数患者死于心肌炎,其心脏病理主要表现为心脏扩张、坏死、心肌淋巴细胞浸润和冠状血管微血栓形成[25]。SARS-CoV-2引起心肌损伤的机制仍不清楚,有尸检报告研究显示,超过一半的COVID-19死亡患者的心肌中存在病毒[26],推测可能是病毒入侵后通过与人血管紧张素转换酶(angiotensin-converting enzyme,ACE) 2受体结合进入宿主细胞直接损害心肌。治疗COVID-19的抗病毒和免疫调节药物也可导致恶性心律失常、低血压和房室传导阻滞[27-28]。此外,部分COVID-19康复患者体内仍残留病毒的RNA片段,这些片段有可能增加心肌纤维化,进而可能损害心脏的重塑[29]。一项COVID-19恢复后的超声心动图提示,患者的左心室在恢复期仍然存在弥漫性炎症,并且在3个月的随访中没有改善,这可能是SARS-CoV-2直接攻击心脏或全身性炎症的继发结果,有可能进一步导致心脏的纤维化改变[30]。
由此可见,长新冠患者存在较常见的心血管系统疾病,SARS-CoV-2感染后发生心血管疾病的风险增加,其机制是多种因素影响心肌细胞、心肌纤维化、心脏重塑障碍,从而造成了一系列的心脏疾患。
2.3 神经系统 2.3.1 临床表现COVID-19患者康复期常见的神经系统症状包括头痛、疲劳、肌痛、厌食、味觉障碍、睡眠障碍、注意力不集中[31],部分患者可出现执行障碍综合征、共济失调和运动障碍[32-33]。美国的一项研究显示,COVID-19患者在感染后一年内出现神经系统症状的风险比未感染者高42%。即使在SARS-CoV-2感染症状较轻的人群中,神经系统的患病风险也会增加[34]。在对11 324名患者进行的中期(3~6个月)和长期(>6个月)随访中,疲劳、脑雾、记忆障碍、注意力下降占30%左右,嗅觉、味觉障碍和头痛占10%左右[35-37]。有研究对患者随访1年发现,59%的患者存在持续的神经症状,其中疲劳占38%,其余症状如注意力难以集中、肌痛等亦有不同比例的存在[38]。
2.3.2 发生机制急性期神经系统损害可能由多种因素导致,包括大脑缺氧、凝血功能障碍、中枢神经系统内的免疫激活和炎症等[39]。嗅觉、味觉改变可能是由SARS-CoV-2与鼻腔和口腔上皮细胞结合引起[40]。SARS-CoV-2感染后期的高水平细胞因子风暴,可能引发血管高凝状态、血栓形成和血脑屏障损害,进一步导致缺血缺氧性脑损伤[41-43],表现为感觉丧失、脑梗、脑水肿等。
因此,SARS-CoV-2感染后由病毒介导的炎症因子风暴、高凝状态、血脑屏障损害等机制,可导致患者出现长期的神经系统症状。
2.4 精神症状 2.4.1 临床表现COVID-19患者康复后的精神症状包括睡眠障碍、创伤后应激障碍、焦虑抑郁症和自杀倾向等,随访发现约60%的患者出现睡眠障碍,应激障碍约占30%,焦虑占23%,自杀占2%[31, 35]。一项纳入18项研究的荟萃分析(包括10 530名患者)发现,随着时间的推移,焦虑和抑郁的患病率显著增加[35]。最近的一项荟萃分析显示,仍有一半的患者在12个月随访时存在精神后遗症,主要表现为抑郁症和创伤后应激障碍[44]。值得注意的是,后遗症的严重程度与急性感染的严重程度密切相关[45]。
2.4.2 发生机制COVID-19患者出现精神症状可能与SARS-CoV-2感染引起的全身免疫炎症反应及心理应激源有关[46]。同神经系统所受的影响相似,病毒感染急性期的炎症因子风暴和机体免疫激活都会导致患者持续处于慢性炎症状态。持续炎症反应可增加焦虑症、抑郁症和创伤应激的患病率,这与心理神经免疫学研究结果是一致的[47]。
2.5 内分泌系统和生殖系统SARS-CoV-2在COVID-19后期对患者的内分泌系统和生殖系统亦造成了不同程度的损害,导致糖尿病、甲状腺疾病、脂代谢异常以及生殖系统功能异常等。
糖尿病被认为是COVID-19加重的高危因素之一。当SARS-CoV-2感染严重时使用糖皮质激素进行治疗,可能对糖尿病本身产生特定的不良影响,导致血糖升高,病情加重,进一步对COVID-19的病程产生不利影响。研究认为SARS-CoV-2可与ACE-2受体相互作用,从而直接影响胰腺β细胞的生成,损害胰岛功能[48]。严重的SARS-CoV-2感染及其相关的高炎症反应对胰岛素靶组织的间接影响和对胰腺β细胞潜在的直接影响,使机体出现胰岛素抵抗和应激性高血糖[49]。甲状腺疾病与COVID-19的严重程度、死亡率或SARS-CoV-2的易感性无关[50]。但在住院的COVID-19患者中,经常监测到甲状腺功能异常,常见的包括低T3综合征、桥本甲状腺炎和亚急性甲状腺炎。既往健康的个体感染SARS-CoV-2后,脂质代谢发生重大变化[51-52]。有研究表明,约3%的患者在感染SARS-CoV-2 30 d后出现血脂异常[53]。在感染180 d后患者血液胆固醇和低密度脂蛋白浓度较高[54]。有报道提示SARS-CoV-2可影响生殖系统功能,包括射精困难[调整后风险比(adjusted hazard ratios,aHRs)为2.63]、性欲减退(aHRs为2.36)[55]、月经紊乱[56]等。
2.6 泌尿系统急性肾损伤(acute kidney injury,AKI)是COVID-19住院患者中很常见的并发症。据报道,24%~57%的COVID-19住院患者和61%~78%的重症监护病房患者会发生AKI[57]。一项大样本队列研究对比了感染SARS-CoV-2的人群(89 216人)和未感染人群(1 637 467人)的肾功能变化,中位随访期为164 d(四分位数间距为127 d~268 d)。研究发现,随访期内COVID-19患者肾功能恶化及患尿毒症的风险明显升高,且病情越重风险越高;同时使用线性混合模型对随访期内至少进行了2次肾小球滤过率(estimated glomerular filtration rate, eGFR)测量的患者进行分析,模型轨迹主要表现为随访期内患者的eGFR下降,而随着随访期的延长,eGFR过度下降的速度减缓[58]。同时,COVID-19合并AKI的患者在后期进展为慢性肾脏病(chronic kidney disease,CKD)的风险显著增加,导致肾功能长期恶化。经过中位数为216.5 d的随访后,74.4% AKI患者的肾功能达到完全临床缓解,在未缓解的患者中,15.4%进展为CKD,10.2%仍需要肾脏替代治疗[59]。
SARS-CoV-2可能通过多种方式影响肾脏,其可能的病理生理机制包括:肾小管损伤、内皮损伤、炎症介质影响、凝血系统紊乱、微血管或大血管损伤和足细胞损伤[60]。因此在随访中须关注后续肾功能恶化及尿毒症风险,持续监测肾脏功能指标。
2.7 消化系统SARS-CoV-2感染对消化系统的影响包括引起多种胃肠道症状及肝脏损害,须得到临床医师的重视。长新冠患者的胃肠道症状包括食欲不振、恶心、腹痛、胃灼热、吞咽困难、肠动力改变和肠易激综合征[61]。一项多中心研究显示,约53%的患者出现胃肠道症状,最常见的症状为腹泻(34%)、恶心(27%)、呕吐(16%)等[62]。在感染SARS-CoV-2 6个月后,仍有29%的患者存在胃肠道症状,包括腹泻(10%)、便秘(11%)、烧灼热(16%)等[63]。目前,关于SARS-CoV-2感染引起胃肠道病变的机制有几种假说,包括ACE-2直接介导的肠道黏膜的细胞损伤、细胞因子诱导的炎症、肠道菌群失调等[64],而肠道微生物群的改变可损害肠上皮细胞从而导致腹泻[65]。
此外,约14%~53%的COVID-19患者可能出现肝功能异常[66],约7.6%~10.8% 的患者在出院后12个月仍然显示肝功能异常[67-68]。本课题组对167名COVID-19出院患者的肝功能进行了长达12个月的随访,发现男性患者在身体质量指数(body mass index,BMI)和肝功能基线水平较高时,其持续性肝功能异常更为常见[68]。
2.8 凝血功能研究表明,感染SARS-CoV-2后患者发生血栓栓塞的机率显著增加[69-71]。一项纳入4 800万成年人的研究显示,与未确诊患者相比,在SARS-CoV-2急性感染1周后,患者首次动脉血栓和静脉血栓的aHRs值分别为21.7和33.2。虽然aHRs随着时间的推移而降低,但在诊断后49周,aHRs值仍分别为1.34和1.80[71]。一项针对1 170万美国退伍军人的研究提示,在超过153 000名的急性SARS-CoV-2感染患者中,1年随访时不良心血管事件的风险显著增加,如心肌梗死、急性冠脉综合征、肺栓塞和中风[24]。在轻症病例和既往健康的年轻患者中,风险比仍然升高。亦有文献报道了其他相对罕见的动脉血栓如主动脉弓血栓形成和肢体缺血的病例[72-73]。此外,COVID-19患者还可能出现急性肠系膜缺血、门静脉血栓形成[74]。目前认为,凝血异常在长新冠患者中常见。长期的病毒感染、缺氧和炎症反应导致内皮细胞持续性损伤、广泛的血管内皮炎和血栓形成。SARS-COV-2可通过ACE-2受体直接与血小板结合,促进血小板的活化、黏附和聚集,从而导致患者凝血功能异常增强[75]。
由此可见,SARS-CoV-2感染对凝血系统有重要的影响,主要表现为栓塞性事件。因此有必要对COVID-19患者进行早期预防性的抗凝治疗,以降低血栓栓塞事件的发生率,尤其是降低冠状动脉疾病和脑血管卒中的发生风险。
3 长新冠的影响因素 3.1 人口学特征Hastie等[76]的研究表明,长新冠的发生与COVID-19患者的年龄及其临床症状的严重程度相关,亦与患者既往的基础疾病尤其是呼吸系统疾病等因素有关。伯明翰大学的一项研究提示,长新冠的风险因素包括年龄、吸烟史、肥胖和各种并发症等,SARS-COV-2感染后发生长新冠的风险可能与患者感染病毒后疾病的严重程度相关[55]。一项纳入了22个国家共120万COVID-19确诊患者的随访研究发现,住院患者出现后遗症的比例相较于非住院患者显著增加,3个月和12个月随访时的数据分别为27.5% vs 5.7%和11.1% vs 0.7%,重症监护室患者的长期后遗症表现更为严重[77]。
3.2 病毒感染COVID-19患者体内较高的SARS-CoV-2载量会导致其症状更加严重[78],一些免疫力低下的宿主可能需要更长的时间才能将完全病毒清除[79]。研究显示,部分患者不能完全有效地消除病毒,宿主体内存在长期的持续性的病毒感染,并刺激免疫反应,从而出现症状并可能发展为长新冠[80]。更有研究提示,感染早期检测到的高病毒载量是导致长新冠的因素之一[81]。一项关于SARS-CoV-2感染(n=443 588)、再感染(2次或2次以上感染,n=40 947)和未感染对照(n=5 334 729)的队列研究显示,与非再感染组相比,再感染组的额外死亡风险和住院治疗的危险比(hazard ratio,HR)值分别为2.17和3.32,出现后遗症的风险也更高[82]。在另一项关于SARS-CoV-2的队列研究中,分别有29%和42%的患者报告味觉更差,37%和46%的患者报告嗅觉比冠状病毒感染前更差[83]。最新研究显示,与仅感染1次的患者相比,再次感染SARS-CoV-2的患者发展为长新冠的风险更高,比例为23%[84]。
以上研究提示,长新冠的发生与患者体内的病毒载量和宿主的抵抗力相关。此外,多次感染可增加长新冠的发生机率。
4 长新冠的治疗长新冠的临床表现多样,涉及人体各个系统,且尚无针对长新冠治疗确切有效的药物,故目前临床多以对症治疗、中西医结合治疗和康复治疗为主。
对症治疗主要选用具有抗炎、抗纤维化和抗氧化作用的药物,如吡非尼酮、尼达尼布等。郭香蕊等[85]研究提示,心肺康复训练(包括运动、健康教育、心理调节等)能够提高特发性肺纤维化病人的运动能力,改善患者的心肺功能和生活质量。Holland等[86]的研究发现,进行肺康复训练后,干预组的最大等负荷心率显著下降,提示心血管系统对运动训练具有适应性。另外,中医康复及中西医结合治疗也取得了一定的成效:适当规律的有氧运动以及太极、静坐等中医康复手段可改善患者的肺功能、缓解临床症状及提高生活质量等[87-89]。
5 结语与展望鉴于目前COVID-19全球大流行的程度,可以预见在未来一段时间内,长新冠患者对医疗保健的需求将持续增加。目前关于COVID-19长期影响的几个重要问题仍未明确,包括长新冠的诊断和治疗依据,各器官受损的持续时间及其严重程度和变化规律,能否对多器官损伤的长期影响进行预测以确定导致健康长期受损的不利因素。综上所述,临床医师在实践中应注意长新冠导致的健康状况改变或新的疾病状态对诊疗过程的影响。
[1] |
World Health Organization. WHO COVID-19 dashboard[EB/OL]. (2023-06-07)[2023-06-24]. https://data.who.int/dashboards/covid19/cases?n=c.
|
[2] |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
[DOI]
|
[3] |
Arnold DT, Hamilton FW, Milne A, Morley AJ, Viner J, Attwood M, Noel A, Gunning S, Hatrick J, Hamilton S, Elvers KT, Hyams C, Bibby A, Moran E, Adamali HI, Dodd JW, Maskell NA, Barratt SL. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort[J]. Thorax, 2021, 76(4): 399-401.
[DOI]
|
[4] |
Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, Walshaw C, Kemp S, Corrado J, Singh R, Collins T, O'Connor RJ, Sivan M. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation[J]. J Med Virol, 2021, 93(2): 1013-1022.
[DOI]
|
[5] |
Huang L, Li X, Gu X, Zhang H, Ren L, Guo L, Liu M, Wang Y, Cui D, Wang Y, Zhang X, Shang L, Zhong J, Wang X, Wang J, Cao B. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study[J]. Lancet Respir Med, 2022, 10(9): 863-876.
[DOI]
|
[6] |
Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, Kang L, Guo L, Liu M, Zhou X, Luo J, Huang Z, Tu S, Zhao Y, Chen L, Xu D, Li Y, Li C, Peng L, Li Y, Xie W, Cui D, Shang L, Fan G, Xu J, Wang G, Wang Y, Zhong J, Wang C, Wang J, Zhang D, Cao B. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study[J]. Lancet, 2021, 397(10270): 220-232.
[DOI]
|
[7] |
Kattainen S, Lindahl A, Vasankari T, Ollila H, Volmonen K, Piirilä P, Kauppi P, Paajanen J, Kreivi HR, Ulenius L, Varpula T, Aro M, Reijula J, Hästbacka J. Lung function and exercise capacity 6 months after hospital discharge for critical COVID-19[J]. BMC Pulm Med, 2022, 22(1): 243.
[DOI]
|
[8] |
Bellan M, Soddu D, Balbo PE, Baricich A, Zeppegno P, Avanzi GC, Baldon G, Bartolomei G, Battaglia M, Battistini S, Binda V, Borg M, Cantaluppi V, Castello LM, Clivati E, Cisari C, Costanzo M, Croce A, Cuneo D, De Benedittis C, De Vecchi S, Feggi A, Gai M, Gambaro E, Gattoni E, Gramaglia C, Grisafi L, Guerriero C, Hayden E, Jona A, Invernizzi M, Lorenzini L, Loreti L, Martelli M, Marzullo P, Matino E, Panero A, Parachini E, Patrucco F, Patti G, Pirovano A, Prosperini P, Quaglino R, Rigamonti C, Sainaghi PP, Vecchi C, Zecca E, Pirisi M. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge[J]. JAMA Netw Open, 2021, 4(1): e2036142.
[DOI]
|
[9] |
Chopra V, Flanders SA, O'Malley M, Malani AN, Prescott HC. Sixty-day outcomes among patients hospitalized with COVID-19[J]. Ann Intern Med, 2021, 174(4): 576-578.
[DOI]
|
[10] |
Huang Y, Tan C, Wu J, Chen M, Wang Z, Luo L, Zhou X, Liu X, Huang X, Yuan S, Chen C, Gao F, Huang J, Shan H, Liu J. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase[J]. Respir Res, 2020, 21(1): 163.
[DOI]
|
[11] |
Mo X, Jian W, Su Z, Chen M, Peng H, Peng P, Lei C, Chen R, Zhong N, Li S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge[J]. Eur Respir J, 2020, 55(6): 2001217.
[DOI]
|
[12] |
Shah AS, Wong AW, Hague CJ, Murphy DT, Johnston JC, Ryerson CJ, Carlsten C. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations[J]. Thorax, 2021, 76(4): 402-404.
[DOI]
|
[13] |
Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, Jia JL, Li LM, Mao HL, Zhou XM, Luo H, Gao YF, Xu AG. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery[J]. EClinicalMedicine, 2020, 25: 100463.
[DOI]
|
[14] |
Wu X, Liu X, Zhou Y, Yu H, Li R, Zhan Q, Ni F, Fang S, Lu Y, Ding X, Liu H, Ewing RM, Jones MG, Hu Y, Nie H, Wang Y. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study[J]. Lancet Respir Med, 2021, 9(7): 747-754.
[DOI]
|
[15] |
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study[J]. The Lancet Infect Dis, 2020, 20(4): 425-434.
[DOI]
|
[16] |
Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, Jacobi A, Li K, Li S, Shan H. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202-207.
[DOI]
|
[17] |
Han X, Fan Y, Alwalid O, Li N, Jia X, Yuan M, Li Y, Cao Y, Gu J, Wu H, Shi H. Six-month follow-up chest CT findings after severe COVID-19 pneumonia[J]. Radiology, 2021, 299(1): E177-E186.
[DOI]
|
[18] |
Ravaglia C, Doglioni C, Chilosi M, Piciucchi S, Dubini A, Rossi G, Pedica F, Puglisi S, Donati L, Tomassetti S, Poletti V. Clinical, radiological, and pathological findings in patients with persistent lung disease following SARS-CoV-2 infection[J]. Eur Respir J, 2022, 60(4): 2102411.
[DOI]
|
[19] |
Fabbri L, Moss S, Khan FA, Chi W, Xia J, Robinson K, Smyth AR, Jenkins G, Stewart I. Parenchymal lung abnormalities following hospitalisation for COVID-19 and viral pneumonitis: a systematic review and meta-analysis[J]. Thorax, 2023, 78(2): 191-201.
[DOI]
|
[20] |
Lee JH, Yim JJ, Park J. Pulmonary function and chest computed tomography abnormalities 6-12 months after recovery from COVID-19: a systematic review and meta-analysis[J]. Respir Res, 2022, 23(1): 233.
[DOI]
|
[21] |
Bhat RA, Maqbool S, Rathi A, Ali SM, Hussenbocus YAAM, Wentao X, Qu Y, Zhang Y, Sun Y, Fu HX, Wang LY, Dwivedi A, Bhat JA, Iqbal RS, Islam MM, Tibrewal A, Gao C. The effects of the SARS-CoV-2 virus on the cardiovascular system and coagulation state leading to cardiovascular diseases: a narrative review[J]. Inquiry, 2022, 59: 1438280126.
[DOI]
|
[22] |
Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, Shchendrygina A, Escher F, Vasa-Nicotera M, Zeiher AM, Vehreschild M, Nagel E. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19)[J]. JAMA Cardiol, 2020, 5(11): 1265-1273.
[DOI]
|
[23] |
Satterfield BA, Bhatt DL, Gersh BJ. Cardiac involvement in the long-term implications of COVID-19[J]. Nat Rev Cardiol, 2022, 19(5): 332-341.
[DOI]
|
[24] |
Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19[J]. Nat Med, 2022, 28(3): 583-590.
[DOI]
|
[25] |
Maiese A, Frati P, Del Duca F, Santoro P, Manetti AC, La Russa R, Di Paolo M, Turillazzi E, Fineschi V. Myocardial pathology in COVID-19-associated cardiac injury: a systematic review[J]. Diagnostics (Basel), 2021, 11(9): 1647.
[DOI]
|
[26] |
Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss HP, Blankenberg S, Püschel K, Westermann D. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases[J]. JAMA Cardiol, 2020, 5(11): 1281-1285.
[DOI]
|
[27] |
Philip B, Mukherjee P, Khare Y, Ramesh P, Zaidi S, Sabry H, Harky A. COVID-19 and its long-term impact on the cardiovascular system[J]. Expert Rev Cardiovasc Ther, 2023, 21(3): 211-218.
[DOI]
|
[28] |
Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of angiotensin Ⅱ in the cardiovascular system[J]. World J Hypertens, 2012, 2(4): 34-44.
[DOI]
|
[29] |
Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, Gorog DA, Hassager C, Heinzel FR, Huber K, Manfrini O, Milicic D, Oikonomou E, Padro T, Trifunovic-Zamaklar D, Vasiljevic-Pokrajcic Z, Vavlukis M, Vilahur G, Tousoulis D. Cardiovascular disease and COVID-19: a consensus paper from the ESC working group on coronary pathophysiology & microcirculation, ESC working group on thrombosis and the association for acute cardio vascular care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA)[J]. Cardiovasc Res, 2021, 117(14): 2705-2729.
[DOI]
|
[30] |
Lassen MCH, Skaarup KG, Lind JN, Alhakak AS, Sengeløv M, Nielsen AB, Simonsen JØ, Johansen ND, Davidovski FS, Christensen J, Bundgaard H, Hassager C, Jabbari R, Carlsen J, Kirk O, Lindholm MG, Kristiansen OP, Nielsen OW, Ulrik CS, Sivapalan P, Gislason G, Møgelvang R, Jensen GB, Schnohr P, Søgaard P, Solomon SD, Iversen K, Jensen JUS, Schou M, Biering-Sørensen T. Recovery of cardiac function following COVID-19-ECHOVID-19: a prospective longitudinal cohort study[J]. Eur J Heart Fail, 2021, 23(11): 1903-1912.
[DOI]
|
[31] |
Patel UK, Mehta N, Patel A, Patel N, Ortiz JF, Khurana M, Urhoghide E, Parulekar A, Bhriguvanshi A, Patel N, Mistry AM, Patel R, Arumaithurai K, Shah S. Long-term neurological sequelae among severe COVID-19 patients: a systematic review and meta-analysis[J]. Cureus, 2022, 14(9): e29694.
[DOI]
|
[32] |
Beghi E, Giussani G, Westenberg E, Allegri R, Garcia-Azorin D, Guekht A, Frontera J, Kivipelto M, Mangialasche F, Mukaetova-Ladinska EB, Prasad K, Chowdhary N, Winkler AS. Acute and post-acute neurological manifestations of COVID-19: present findings, critical appraisal, and future directions[J]. J Neurol, 2022, 269(5): 2265-2274.
[DOI]
|
[33] |
Estiri H, Strasser ZH, Brat GA, Semenov YR, Consortium for Characterization of COVID-19 by EHR (4CE), Patel CJ, Murphy SN. Evolving phenotypes of non-hospitalized patients that indicate long COVID[J]. BMC Med, 2021, 19(1): 249.
[DOI]
|
[34] |
Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19[J]. Nat Med, 2022, 28(11): 2406-2415.
[DOI]
|
[35] |
Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, Suen J, Robba C, Fraser J, Cho SM. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis[J]. J Neurol Sci, 2022, 434: 120162.
[DOI]
|
[36] |
Stefanou MI, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, Rizos E, Boutati E, Grigoriadis N, Krogias C, Giannopoulos S, Tsiodras S, Gaga M, Tsivgoulis G. Neurological manifestations of long-COVID syndrome: a narrative review[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221076890.
[DOI]
|
[37] |
Nersesjan V, Amiri M, Lebech AM, Roed C, Mens H, Russell L, Fonsmark L, Berntsen M, Sigurdsson ST, Carlsen J, Langkilde AR, Martens P, Lund EL, Hansen K, Jespersen B, Folke MN, Meden P, Hejl AM, Wamberg C, Benros ME, Kondziella D. Central and peripheral nervous system complications of COVID-19: a prospective tertiary center cohort with 3-month follow-up[J]. J Neurol, 2021, 268(9): 3086-3104.
[DOI]
|
[38] |
Rass V, Beer R, Schiefecker AJ, Lindner A, Kofler M, Ianosi BA, Mahlknecht P, Heim B, Peball M, Carbone F, Limmert V, Kindl P, Putnina L, Fava E, Sahanic S, Sonnweber T, Löscher WN, Wanschitz JV, Zamarian L, Djamshidian A, Tancevski I, Weiss G, Bellmann-Weiler R, Kiechl S, Seppi K, Loeffler-Ragg J, Pfausler B, Helbok R. Neurological outcomes 1 year after COVID-19 diagnosis: a prospective longitudinal cohort study[J]. Eur J Neurol, 2022, 29(6): 1685-1696.
[DOI]
|
[39] |
Leng A, Shah M, Ahmad SA, Premraj L, Wildi K, Li Bassi G, Pardo CA, Choi A, Cho SM. Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics[J]. Cells, 2023, 12(5): 816.
[DOI]
|
[40] |
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou HJ, Fletcher RB, Das D, Street K, de Bezieux HR, Choi YG, Risso D, Dudoit S, Purdom E, Mill J, Hachem RA, Matsunami H, Logan DW, Goldstein BJ, Grubb MS, Ngai J, Datta SR. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia[J]. Sci Adv, 2020, 6(31): eabc5801.
[DOI]
|
[41] |
Heming M, Li X, Räuber S, Mausberg AK, Börsch AL, Hartlehnert M, Singhal A, Lu IN, Fleischer M, Szepanowski F, Witzke O, Brenner T, Dittmer U, Yosef N, Kleinschnitz C, Wiendl H, Stettner M, Meyer Zu Hörste G. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid[J]. Immunity, 2021, 54(1): 164-175.
[DOI]
|
[42] |
Townsend L, Dyer AH, Naughton A, Kiersey R, Holden D, Gardiner M, Dowds J, O'Brien K, Bannan C, Nadarajan P, Dunne J, Martin-Loeches I, Fallon PG, Bergin C, O'Farrelly C, Cheallaigh CN, Bourke NM, Conlon N. Longitudinal analysis of COVID-19 patients shows age-associated T cell changes independent of ongoing ill-health[J]. Front Immunol, 2021, 12: 676932.
[DOI]
|
[43] |
Pretorius E, Vlok M, Venter C, Bezuidenhout JA, Laubscher GJ, Steenkamp J, Kell DB. Persistent clotting protein pathology in long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin[J]. Cardiovasc Diabetol, 2021, 20(1): 172.
[DOI]
|
[44] |
Zeng N, Zhao YM, Yan W, Li C, Lu QD, Liu L, Ni SY, Mei H, Yuan K, Shi L, Li P, Fan TT, Yuan JL, Vitiello MV, Kosten T, Kondratiuk AL, Sun HQ, Tang XD, Liu MY, Lalvani A, Shi J, Bao YP, Lu L. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action[J]. Mol Psychiatry, 2023, 28(1): 423-433.
[DOI]
|
[45] |
Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterisation of post-COVID-19 manifestations[J]. Int J Clin Pract, 2021, 75(3): e13746.
[DOI]
|
[46] |
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 depressive symptoms: epidemiology, pathophysiology, and pharmacological treatment[J]. CNS Drugs, 2022, 36(7): 681-702.
[DOI]
|
[47] |
Frontera, JA, Simon NM. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19[J]. JAMA Psychiatry, 2022, 79(8): 811-817.
[DOI]
|
[48] |
Landstra CP, de Koning EJP. COVID-19 and diabetes: understanding the interrelationship and risks for a severe course[J]. Front Endocrinol (Lausanne), 2021, 12: 649525.
[DOI]
|
[49] |
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes[J]. Acta Diabetol, 2010, 47(3): 193-199.
[DOI]
|
[50] |
Brix TH, Hegedus L, Hallas J, Lund LC. Risk and course of SARS-CoV-2 infection in patients treated for hypothyroidism and hyperthyroidism[J]. Lancet Diabetes Endocrinol, 2021, 9(4): 197-199.
[DOI]
|
[51] |
Ren Z, Wang H, Cui G, Lu H, Wang L, Luo H, Chen X, Ren H, Sun R, Liu W, Liu X, Liu C, Li A, Wang X, Rao B, Yuan C, Zhang H, Sun J, Chen X, Li B, Hu C, Wu Z, Yu Z, Kan Q, Li L. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19[J]. Gut, 2021, 70(7): 1253-1265.
[DOI]
|
[52] |
Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19-associated dyslipidemia: implications for mechanism of impaired resolution and novel therapeutic approaches[J]. FASEB J, 2020, 34(8): 9843-9853.
[DOI]
|
[53] |
FAIR Health. A detailed study of patients with long-haul COVID: an analysis of private healthcare claims[R/OL]. (2021-06-15)[2023-06-24]. https://collections.nlm.nih.gov/catalog/nlm:nlmuid-9918334383006676-pdf.
|
[54] |
Deuel JW, Lauria E, Lovey T, Zweifel S, Meier MI, Züst R, Gültekin N, Stettbacher A, Schlagenhauf P. Persistence, prevalence, and polymorphism of sequelae after COVID-19 in unvaccinated, young adults of the Swiss armed forces: a longitudinal, cohort study (LoCoMo)[J]. Lancet Infect Dis, 2022, 22(12): 1694-1702.
[DOI]
|
[55] |
Subramanian A, Nirantharakumar K, Hughes S, Myles P, Williams T, Gokhale KM, Taverner T, Chandan JS, Brown K, Simms-Williams N, Shah AD, Singh M, Kidy F, Okoth K, Hotham R, Bashir N, Cockburn N, Lee SI, Turner GM, Gkoutos GV, Aiyegbusi OL, McMullan C, Denniston AK, Sapey E, Lord JM, Wraith DC, Leggett E, Iles C, Marshall T, Price MJ, Marwaha S, Davies EH, Jackson LJ, Matthews KL, Camaradou J, Calvert M, Haroon S. Symptoms and risk factors for long COVID in non-hospitalized adults[J]. Nat Med, 2022, 28(8): 1706-1714.
[DOI]
|
[56] |
Khan SM, Shilen A, Heslin KM, Ishimwe P, Allen AM, Jacobs ET, Farland LV. SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study[J]. Am J Obstet Gynecol, 2022, 226(2): 270-273.
[DOI]
|
[57] |
Nugent J, Aklilu A, Yamamoto Y, Simonov M, Li F, Biswas A, Ghazi L, Greenberg H, Mansour G, Moledina G, Wilson FP. Assessment of acute kidney injury and longitudinal kidney function after hospital discharge among patients with and without COVID-19[J]. JAMA Netw Open, 2021, 4(3): e211095.
[DOI]
|
[58] |
Bowe B, Xie Y, Xu E, Al-Aly Z. Kidney outcomes in long COVID[J]. J Am Soc Nephrol, 2021, 32(11): 2851-2862.
[DOI]
|
[59] |
Chand S, Kapoor S, Naqvi A, Thakkar J, Fazzari MJ, Orsi D, Dieiev V, Lewandowski DC, Dicpinigaitis PV. Long-term follow up of renal and other acute organ failure in survivors of critical illness due to Covid-19[J]. J Intensive Care Med, 2022, 37(6): 736-742.
[DOI]
|
[60] |
Chiang KC, Imig JD, Kalantar-Zadeh K, Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis[J]. Curr Opin Nephrol Hypertens, 2022, 31(1): 36-46.
[DOI]
|
[61] |
Meringer H, Mehandru S. Gastrointestinal post-acute COVID-19 syndrome[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(6): 345-346.
[DOI]
|
[62] |
Hajifathalian K, Krisko T, Mehta A, Kumar S, Schwartz R, Fortune B, Sharaiha RZ, WCM-GI research group. Gastrointestinal and hepatic manifestations of 2019 novel coronavirus disease in a large cohort of infected patients from New York: clinical implications[J]. Gastroenterology, 2020, 159(3): 1137-1140.
[DOI]
|
[63] |
Blackett JW, Wainberg M, Elkind MSV, Freedberg DE. Potential long coronavirus disease 2019 gastrointestinal symptoms 6 months after coronavirus infection are associated with mental health symptoms[J]. Gastroenterology, 2022, 162(2): 648-650.
[DOI]
|
[64] |
Aleem A, Shah H. Gastrointestinal and hepatic manifestations of coronavirus (COVID-19)[M]. Treasure Island, FL: StatPearls Publishing, 2023.
|
[65] |
Vodnar DC, Mitrea L, Teleky BE, Szabo K, Cǎlinoiu LF, Nemes SA, Martǎu GA. Coronavirus disease (COVID-19) caused by (SARS-CoV-2) infections: a real challenge for human gut microbiota[J]. Front Cell Infect Microbiol, 2020, 10: 575559.
[DOI]
|
[66] |
Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections[J]. Liver Int, 2020, 40(5): 998-1004.
[DOI]
|
[67] |
Liu T, Wu D, Yan W, Wang X, Zhang X, Ma K, Chen H, Zeng Z, Qin Y, Wang H, Xing M, Xu D, Li W, Ni M, Zhu L, Chen L, Chen G, Qi W, Wu T, Yu H, Huang J, Han M, Zhu W, Guo W, Luo X, Chen T, Ning Q. Twelve-month systemic consequences of COVID-19 in patients discharged from hospital: a prospective cohort study in Wuhan, China[J]. Clin Infect Dis, 2022, 74(11): 1953-1965.
[DOI]
|
[68] |
Liao X, Li D, Ma Z, Zhang L, Zheng B, Li Z, Li G, Liu L, Zhang Z. 12-month post-discharge liver function test abnormalities among patients with COVID-19: a single-center prospective cohort study[J]. Front Cell Infect Microbiol, 2022, 12: 864933.
[DOI]
|
[69] |
Katsoularis I, Fonseca-Rodriguez O, Farrington P, Jerndal H, Lundevaller EH, Sund M, Lindmark K, Fors Connolly AM. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study[J]. BMJ, 2022, 377: e69590.
[DOI]
|
[70] |
Jiménez-Rodríguez BM, Gutiérrez-Fernández J, Ramos-Urbina EM, Romero-Ortiz AD, García-Flores PI, Santiago-Puertas MI, Martín-López MJ, López-Milena G, Fabregas R, Morales-García C. On the single and multiple associations of COVID-19 post-acute sequelae: 6-month prospective cohort study[J]. Sci Rep, 2022, 12(1): 3402.
[DOI]
|
[71] |
Knight R, Walker V, Ip S, Cooper JA, Bolton T, Keene S, Denholm R, Akbari A, Abbasizanjani H, Torabi F, Omigie E, Hollings S, North TL, Toms R, Jiang X, Angelantonio ED, Denaxas S, Thygesen JH, Tomlinson C, Bray B, Smith CJ, Barber M, Khunti K, Davey Smith G, Chaturvedi N, Sudlow C, Whiteley WN, Wood AM, Sterne JAC, CVD-COVID-UK/COVID-IMPACT Consortium and the Longitudinal Health and Wellbeing COVID-19 National Core Study. Association of COVID-19 with major arterial and venous thrombotic diseases: a population-wide cohort study of 48 million adults in England and Wales[J]. Circulation, 2022, 146(12): 892-906.
[DOI]
|
[72] |
de Roquetaillade C, Chousterman B G, Tomasoni D, Zeitouni M, Houdart E, Guedon A, Reiner P, Bordier R, Gayat E, Montalescot G, Metra M, Mebazaa A. Unusual arterial thrombotic events in Covid-19 patients[J]. Int J Cardiol, 2021, 323: 281-284.
[DOI]
|
[73] |
Azouz E, Yang S, Monnier-Cholley L, Arrivé L. Systemic arterial thrombosis and acute mesenteric ischemia in a patient with COVID-19[J]. Intensive Care Med, 2020, 46(7): 1464-1465.
[DOI]
|
[74] |
Parry AH, Wani AH, Yaseen M. Acute mesenteric ischemia in severe coronavirus-19 (COVID-19): possible mechanisms and diagnostic pathway[J]. Acad Radiol, 2020, 27(8): 1190.
[DOI]
|
[75] |
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19[J]. J Hematol Oncol, 2020, 13(1): 120.
[DOI]
|
[76] |
Hastie CE, Lowe DJ, McAuley A, Winter AJ, Mills NL, Black C, Scott JT, O'Donnell CA, Blane DN, Browne S, Ibbotson TR, Pell JP. Outcomes among confirmed cases and a matched comparison group in the long-COVID in Scotland study[J]. Nat Commun, 2022, 13(1): 5663.
[DOI]
|
[77] |
Global Burden of Disease Long COVID Collaborators, Wulf Hanson S, Abbafati C, Aerts JG, Al-Aly Z, Ashbaugh C, Ballouz T, Blyuss O, Bobkova P, Bonsel G, Borzakova S, Buonsenso D, Butnaru D, Carter A, Chu H, De Rose C, Diab MM, Ekbom E, El Tantawi M, Fomin V, Frithiof R, Gamirova A, Glybochko PV, Haagsma JA, Haghjooy Javanmard S, Hamilton EB, Harris G, Heijenbrok-Kal MH, Helbok R, Hellemons ME, Hillus D, Huijts SM, Hultström M, Jassat W, Kurth F, Larsson IM, Lipcsey M, Liu C, Loflin CD, Malinovschi A, Mao W, Mazankova L, McCulloch D, Menges D, Mohammadifard N, Munblit D, Nekliudov NA, Ogbuoji O, Osmanov IM, Peñalvo JL, Petersen MS, Puhan MA, Rahman M, Rass V, Reinig N, Ribbers GM, Ricchiuto A, Rubertsson S, Samitova E, Sarrafzadegan N, Shikhaleva A, Simpson KE, Sinatti D, Soriano JB, Spiridonova E, Steinbeis F, Svistunov AA, Valentini P, van de Water BJ, van den Berg-Emons R, Wallin E, Witzenrath M, Wu Y, Xu H, Zoller T, Adolph C, Albright J, Amlag JO, Aravkin AY, Bang-Jensen BL, Bisignano C, Castellano R, Castro E, Chakrabarti S, Collins JK, Dai X, Daoud F, Dapper C, Deen A, Duncan BB, Erickson M, Ewald SB, Ferrari AJ, Flaxman AD, Fullman N, Gamkrelidze A, Giles JR, Guo G, Hay SI, He J, Helak M, Hulland EN, Kereselidze M, Krohn KJ, Lazzar-Atwood A, Lindstrom A, Lozano R, Malta DC, Månsson J, Mantilla Herrera AM, Mokdad AH, Monasta L, Nomura S, Pasovic M, Pigott DM, Reiner RC Jr, Reinke G, Ribeiro ALP, Santomauro DF, Sholokhov A, Spurlock EE, Walcott R, Walker A, Wiysonge CS, Zheng P, Bettger JP, Murray CJL, Vos T. Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021[J]. JAMA, 2022, 328(16): 1604-1615.
[DOI]
|
[78] |
Fajnzylber J, Regan J, Coxen K, Corry H, Wong C, Rosenthal A, Worrall D, Giguel F, Piechocka-Trocha A, Atyeo C, Fischinger S, Chan A, Flaherty KT, Hall K, Dougan M, Ryan ET, Gillespie E, Chishti R, Li Y, Jilg N, Hanidziar D, Baron RM, Baden L, Tsibris AM, Armstrong KA, Kuritzkes DR, Alter G, Walker BD, Yu X, Li JZ, Massachusetts Consortium for Pathogen Readiness. SARS-CoV-2 viral load is associated with increased disease severity and mortality[J]. Nat Commun, 2020, 11(1): 5493.
[DOI]
|
[79] |
中国抗癌协会肿瘤支持治疗专业委员会, 中国抗癌协会肿瘤临床化疗专业委员会. 新型冠状病毒肺炎疫情期间实体肿瘤患者防护和诊治管理相关问题中国专家共识(2022版)[J]. 中华肿瘤杂志, 2022, 44(10): 1083-1090. |
[80] |
Sumi T, Harada K. Immune response to SARS-CoV-2 in severe disease and long COVID-19[J]. iScience, 2022, 25(8): 104723.
[DOI]
|
[81] |
Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, Li S, Hong S, Zhang R, Xie J, Kornilov SA, Scherler K, Pavlovitch-Bedzyk AJ, Dong S, Lausted C, Lee I, Fallen S, Dai CL, Baloni P, Smith B, Duvvuri VR, Anderson KG, Li J, Yang F, Duncombe CJ, McCulloch DJ, Rostomily C, Troisch P, Zhou J, Mackay S, DeGottardi Q, May DH, Taniguchi R, Gittelman RM, Klinger M, Snyder TM, Roper R, Wojciechowska G, Murray K, Edmark R, Evans S, Jones L, Zhou Y, Rowen L, Liu R, Chour W, Algren HA, Berrington WR, Wallick JA, Cochran RA, Micikas ME, ISB-Swedish COVID-19 Biobanking Unit, Wrin T, Petropoulos CJ, Cole HR, Fischer TD, Wei W, Hoon DSB, Price ND, Subramanian N, Hill JA, Hadlock J, Magis AT, Ribas A, Lanier LL, Boyd SD, Bluestone JA, Chu H, Hood L, Gottardo R, Greenberg PD, Davis MM, Goldman JD, Heath JR. Multiple early factors anticipate post-acute COVID-19 sequelae[J]. Cell, 2022, 185(5): 881-895.
[DOI]
|
[82] |
Bowe B, Xie Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection[J]. Nat Med, 2022, 28(11): 2398-2405.
[DOI]
|
[83] |
Jaramillo M, Thyvalikakath TP, Eckert G, Srinivasan M. Characteristics of chemosensory perception in long COVID and COVID reinfection[J]. J Clin Med, 2023, 12(10): 3598.
[DOI]
|
[84] |
Thaweethai T, Jolley SE, Karlson EW, Levitan EB, Levy B, McComsey GA, McCorkell L, Nadkarni GN, Parthasarathy S, Singh U, Walker TA, Selvaggi CA, Shinnick DJ, Schulte CCM, Atchley-Challenner R, Alba GA, Alicic R, Altman N, Anglin K, Argueta U, Ashktorab H, Baslet G, Bassett IV, Bateman L, Bedi B, Bhattacharyya S, Bind MA, Blomkalns AL, Bonilla H, Bush PA, Castro M, Chan J, Charney AW, Chen P, Chibnik LB, Chu HY, Clifton RG, Costantine MM, Cribbs SK, Davila Nieves SI, Deeks SG, Duven A, Emery IF, Erdmann N, Erlandson KM, Ernst KC, Farah-Abraham R, Farner CE, Feuerriegel EM, Fleurimont J, Fonseca V, Franko N, Gainer V, Gander JC, Gardner EM, Geng LN, Gibson KS, Go M, Goldman JD, Grebe H, Greenway FL, Habli M, Hafner J, Han JE, Hanson KA, Heath J, Hernandez C, Hess R, Hodder SL, Hoffman MK, Hoover SE, Huang B, Hughes BL, Jagannathan P, John J, Jordan MR, Katz SD, Kaufman ES, Kelly JD, Kelly SW, Kemp MM, Kirwan JP, Klein JD, Knox KS, Krishnan JA, Kumar A, Laiyemo AO, Lambert AA, Lanca M, Lee-Iannotti JK, Logarbo BP, Longo MT, Luciano CA, Lutrick K, Maley JH, Marathe JG, Marconi V, Marshall GD, Martin CF, Matusov Y, Mehari A, Mendez-Figueroa H, Mermelstein R, Metz TD, Morse R, Mosier J, Mouchati C, Mullington J, Murphy SN, Neuman RB, Nikolich JZ, Ofotokun I, Ojemakinde E, Palatnik A, Palomares K, Parimon T, Parry S, Patterson JE, Patterson TF, Patzer RE, Peluso MJ, Pemu P, Pettker CM, Plunkett BA, Pogreba-Brown K, Poppas A, Quigley JG, Reddy U, Reece R, Reeder H, Reeves WB, Reiman EM, Rischard F, Rosand J, Rouse DJ, Ruff A, Saade G, Sandoval GJ, Schlater SM, Shepherd F, Sherif ZA, Simhan H, Singer NG, Skupski DW, Sowles A, Sparks JA, Sukhera FI, Taylor BS, Teunis L, Thomas RJ, Thorp JM, Thuluvath P, Ticotsky A, Tita AT, Tuttle KR, Urdaneta AE, Valdivieso D, VanWagoner TM, Vasey A, Verduzco-Gutierrez M, Wallace ZS, Ward HD, Warren DE, Weiner SJ, Welch S, Whiteheart SW, Wiley Z, Wisnivesky JP, Yee LM, Zisis S, Horwitz LI, Foulkes AS, RECOVER Consortium. Development of a definition of postacute sequelae of SARS-CoV-2 infection[J]. JAMA, 2023, 329(22): 1934-1946.
[DOI]
|
[85] |
郭香蕊, 钱力, 刘学军. 肺康复对特发性肺纤维化病人心肺功能及生活质量影响的Meta分析[J]. 护理研究, 2023, 37(1): 169-173. [CNKI]
|
[86] |
Holland AE, Hill CJ, Conron M, Munro P, McDonald CF. Short term improvement in exercise capacity and symptoms following exercise training in interstitial lung disease[J]. Thorax, 2008, 63(6): 549-554.
[DOI]
|
[87] |
李智慧, 邸家琪, 徐莉莉, 杨曙光, 于宁霞, 余学庆. 康复疗法干预特发性肺纤维化的临床研究现状及特征分析[J]. 世界科学技术-中医药现代化, 2023, 25(2): 694-701. [CNKI]
|
[88] |
倪晓琴, 张海霞, 折艳涛. 自拟补气通络方联合情绪释放疗法在气虚血瘀型肺纤维化患者中的应用评价[J]. 四川中医, 2019, 37(2): 85-87. [CNKI]
|
[89] |
李戎, 闫智勇, 李文军, 刘春涛, 田和炳, 李艳华, 刘宗群, 任玉兰, 李富红. 针灸治疗特发性肺纤维化临床观察[J]. 针灸临床杂志, 2004, 20(2): 11-12. [CNKI]
|