文章快速检索     高级检索
  微生物与感染  2024, Vol. 19 Issue (1): 58-64      DOI: 10.3969/j.issn.1673-6184.2024.01.007
0
Contents            PDF            Abstract             Full text             Fig/Tab
单纯疱疹病毒脑炎临床免疫特征前沿总结
薛荃璘 , 林可 , 仇超 , 张文宏 , 艾静文     
复旦大学附属华山医院感染科, 上海市传染病与生物安全应急响应重点实验室, 国家传染病医学中心, 上海 200040
摘要:1型单纯疱疹病毒(herpes simplex virus type1,HSV-1)可以引起致命性的单纯疱疹病毒脑炎(herpes simplex virus encephalitis,HSE),部分患者即使接受抗病毒治疗也会有严重的神经系统后遗症。有效抑制和清除HSV-1感染依赖于宿主的固有和适应性免疫反应,适应性免疫中T细胞的激活和调节起到主要作用,同时固有免疫也在抑制病毒复制和传播中起到重要作用。本文通过回顾HSE中免疫反应特征和机制的相关研究,对HSE中免疫系统对机体的保护和损伤作用进行了总结,为新的机制研究以及开发新的免疫疗法提供了思路。
关键词单纯疱疹病毒    病毒性脑炎    固有免疫    适应性免疫    
Frontiers in clinical immunological characteristics of herpes simplex virus encephalitis
XUE Quanlin , LIN Ke , QIU Chao , ZHANG Wenhong , AI Jingwen     
Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
Abstract: Herpes simplex virus type 1 (HSV-1) can cause fatal herpes simplex virus encephalitis (HSE), and some patients may experience severe neurological sequelae even with antiviral therapy. Effective suppression and clearance of HSV-1 infection rely on both innate and adaptive immune responses of the host, with T-cell activation and regulation playing a major role in adaptive immunity, while innate immunity also plays a crucial role in inhibiting virus replication and spread. This article summarized the immune response characteristics and mechanisms in HSE, outlined the protective and damaging effects of the immune system on the body, thereby providing insights for new mechanistic studies and the development of novel immunotherapies.
Keywords: Herpes simplex virus    Viral encephalitis    Innate immunity    Adaptive immunity    

脑炎是伴有神经功能障碍的脑实质炎症,可由感染性和非感染性原因引起[1]。脑部炎症导致患者精神状态改变,表现为意识减退和认知功能改变,以及性格和行为改变[2]。1型单纯疱疹病毒(herpes simplex virus type 1,HSV-1)导致的单纯疱疹病毒脑炎(herpes simplex virus encephalitis,HSE)是引起散发性病毒性脑炎的最常见原因,即使采用抗病毒治疗,相当一部分患者仍会因此遗留神经损伤甚至死亡[3]。在发展中国家,HSV-1的广泛感染通过在幼儿时期与家庭的密切接触而获得,其血清阳性可能覆盖超70%的世界人口[4]。HSV-1属于α疱疹病毒亚科单纯疱疹病毒属,其含有双链DNA(double-stranded DNA,dsDNA), 位于被膜包围的二十面体衣壳中。α疱疹病毒的特点是短复制周期导致宿主细胞裂解[5]。HSV-1的原发感染主要发生在皮肤或黏膜的上皮细胞,并在逆向轴突运输至感觉神经节时建立潜伏感染[6]。在HSV-1潜伏感染期间,除了编码潜伏相关转录物(latency-associated transcripts,LATs)的序列,其余基因的转录则被抑制[7]。抑制病毒的扩散和清除宿主中的病毒,两者都依赖宿主的固有和适应性免疫。同时在感染过程中,HSV-1通过多种机制来逃避先天宿主免疫反应并削弱宿主抗病毒的能力[8-9]。在机体免疫水平降低时,潜伏的HSV-1会重新启动复制导致感染发生。由于HSV-1感染的普遍性及其导致病毒性脑炎的严重不良预后,本文综述了HSV-1导致的感染性脑炎中固有免疫和适应性免疫在病程中的作用,这有利于协助临床早期诊断和介入治疗HSE及开发免疫相关药物。

1 固有免疫对机体的保护机制

在感染后,HSV-1通过感觉神经或是由潜伏在三叉神经的病毒进入大脑[10],并在神经元和神经胶质细胞中复制,固有免疫对于启动初始和增强免疫反应以及抑制病毒在大脑的复制尤为重要。固有免疫由病原体识别受体(pathogen recognition receptors,PRR)启动,它检测保守的病原体相关分子模式(pathogen associated molecular pattern,PAMP)[11]。在小胶质细胞和星状胶质细胞中存在toll样受体2(toll-like receptor 2, TLR2)和toll样受体9(toll-like receptor 9, TLR9),小胶质细胞、星状胶质细胞、少突胶质细胞以及神经元中均存在toll样受体3(toll-like receptor 3, TLR3)[12]。其中位于胞膜的TLR2感知存在于HSV-1包膜中的病毒糖蛋白[13-14],内体膜中的TLR9感知包含在HSV-1基因组中未甲基化CpG的DNA[15],同样位于内体膜的TLR3识别在HSV-1复制过程中产生的dsRNA[16]。虽然,TLR3在人体中抵御一些微生物的入侵时是“多余”的,但其在中枢神经系统对于HSV-1的固有免疫却是至关重要的[17]。除了TLR3,toll样受体相关性干扰素激活因子(TIR-domain-containing adapter-inducing interferon-beta,TRIF)可以和干扰素基因刺激蛋白(stimulator of interferon genes,STING)作用触发针对病原体的固有免疫[18]。cGAS-STING信号通路被发现存在于小胶质细胞和星状胶质细胞[19]。病毒的dsDNA进入细胞后被环GMP-AMP合成酶(cyclic GMP-AMP synthase,cGAS)识别并激活,催化ATP和GTP合成环GAMP(cyclic GMP-AMP,cGAMP)[20]。这种环二核苷酸可与STING结合,参与招募和激活TANK激活激酶1(tank-binding kinase 1,TBK1),导致干扰素调节因子IRF-3发生磷酸化,进入细胞核后促进Ⅰ型干扰素基因表达并产生干扰素[21]。IFI16在这条通路中作为外源性双链DNA的关键传感器,对于HSV-1的Ⅰ型干扰素应答至关重要[22]。Ⅰ型干扰素是控制病毒感染的关键,其表达主要通过病毒核酸的诱导。这些PRRs识别病毒成分后,最终都会通过转录因子调节细胞因子、趋化因子和Ⅰ型干扰素的产生[23]。在中枢神经系统中,cGAS-STING和TLR3-TRIF是参与针对HSV-1感染产生Ⅰ型干扰素的主要信号通路。事实上, 是小胶质细胞通过cGAS-STING信号通路启动Ⅰ型干扰素的产生,并协调抗病毒固有免疫反应[19]

在小鼠实验中,研究者发现γ/δ T细胞限制了HSV-1导致的严重上皮损伤,并通过防止致命性的病毒性脑炎的发展来大大降低死亡率[24]。由于γ/δ T细胞以非组织相容性复合体(major histocompatibility complex,MHC)依赖的方式直接识别抗原,且神经元不常以MHC限制的方式呈递抗原,故其不仅可以避开病毒干预导致的MHC抗原呈递能力下降,而且能在缺乏MHC的情况下继续发挥免疫保护作用。在α/β T细胞功能受损的情况下,如在人类获得性免疫缺陷综合征患者中,γ/δ T细胞可能是保护受感染个体所必需的。

2 适应性免疫对机体的保护机制

当HSV-1感染到大脑时,CD4+T细胞和CD8+T细胞渗透入中枢神经系统。一经激活,就在感染中开始发挥关键免疫作用[25]。主要组织相容性复合体I类(MHC-I)存在于抗原呈递细胞表面,它能够识别病原体,并激活CD8+T细胞合成细胞因子和趋化因子[26]。其中,病毒特异性CD8+T细胞分泌的γ -干扰素(interferon- γ, IFN- γ)增加了原癌基因BCL-2的表达以抑制神经元凋亡, 从而保护神经元免受HSE期间的大规模破坏[27]。同时,IFN- γ促进了抗原的呈递, 从而抑制病毒感染[28]。与此同时,CD8+T细胞中颗粒酶和穿孔素表达上调,这些细胞获得了细胞溶解能力以及进入非淋巴组织的能力[29]

HSV-1通过逆向轴突运输从原发感染灶迁移到三叉神经节,并在此建立潜伏期。HSV-1广泛潜伏在人群中,在40例非神经系统疾病死亡患者的神经系统组织中,65%患者的三叉神经节以及35%患者的大脑中检测到HSV-1基因组序列[30]。CD8+T细胞除了在HSV-1病毒性脑炎急性感染期发挥了重要的免疫保护作用外,其在潜伏期感染过程中也扮演着重要的角色。HSV-1潜伏与再激活的过程主要由CD8+T细胞参与,病毒特异性CD8+T细胞渗入三叉神经节并包围感染了HSV-1的神经元,通过将病毒保持在潜伏状态来防止再激活[31]。作为记忆T细胞的一种,组织驻留记忆CD8+T细胞(tissue resident memory CD8+T cell, CD8+TRM)驻留在屏障组织(如肺、皮肤、生殖道和肠道)中,并监视和维持感染后的稳态。在病毒性脑炎的急性期后,CD8+T细胞长期驻留在中枢并形成CD8+TRM[32-33]。这类细胞表达CD103(整合素α E亚单位)和CD69(T细胞受体激活和组织保留的近端标记物)。CD103是识别E钙黏蛋白的整合素分子α E β 7的α链,可能在细胞归巢并滞留在肠上皮细胞中起重要作用。HSV特异性CD8+ T细胞可以在三叉神经节中终生存活,而无需循环中的CD8+T细胞补充,HSV再活化的速度取决于潜在感染神经元的数量和浸润三叉神经节的CD8+T细胞的数量[34]。来自HSV-1感染的人类神经节切片的组织病理学证据显示,大量CD8+T细胞浸润和炎症细胞因子的存在,提示外周神经中激活的效应记忆细胞的存在对维持人体中HSV-1潜伏期很重要[35]

HSV-1感染相关研究中针对CD4+ T细胞的研究相对较少,通常认为CD8+T细胞在控制HSV-1感染和复活中更为重要[36]。而CD4+T细胞对于帮助诱导CD8+T细胞对HSV-1产生反应很重要。Rajasagi等[37]观察在缺乏CD4+T细胞的情况下产生的CD8+T细胞的功能和表型时,发现CD44(一种参与CD8+T细胞活化的蛋白)在CD4基因缺失的小鼠中产生的水平与野生型小鼠相当。然而,与野生型小鼠相比,CD4缺失小鼠中CD25,即IL-2受体(IL-2R) α链的表达水平显著降低。早期的体外实验研究发现,HSV-1感染中的CD4+T细胞, 主要是通过提供白介素2(interleukin 2,IL-2)来促进CD8+T细胞的分化和增殖[38]。CD8+T细胞上CD25的低表达可能由IL-2水平下降或是树突状细胞不完全激活引起。体外试验表明,HSV-1感染的CD4基因缺失小鼠中分离出的树突状细胞刺激CD8+T细胞增殖和诱导IL-2R上调的能力受到损害。同时,HSV糖蛋白B特异性CD8+T细胞在细胞免疫初期由于缺失CD4+T细胞,其产生IFN- γ和TNF- α的水平有所降低。但是IL-2R的低表达不影响CD8+T的细胞溶解能力和穿孔素及颗粒酶B的胞内表达[39]。在HSV-1特异性CD8+T细胞上没有CD25表达的情况下,仍在脾脏中发现了HSV糖蛋白B特异性T细胞,表明HSV糖蛋白B特异性T细胞的存在并不需要CD25的持续表达。虽然,没有CD4+T细胞帮助的CD8+T细胞似乎可以独自对抗急性HSV-1感染,但是在CD4+T细胞缺失的情况下,记忆性CD8+T细胞前体的形成会受到影响[40]

尽管T细胞在控制中枢HSV-1感染中发挥着至关重要的作用,但有研究指出B细胞缺陷型的小鼠更易感染HSE[41]。这种易感性的产生可能是抗体的缺乏、T-B细胞相互作用的缺失引起的。进一步的研究通过比较B细胞缺陷小鼠和野生型小鼠的单个核细胞中的总T细胞发现,在B细胞缺乏的情况下,由T细胞介导的初始免疫明显丧失。虽然总的T细胞数量并无明显改变,但是病毒特异性T细胞的数量减少了75%[42]

3 免疫系统对机体的损伤机制

正如上文所述,TLR-2是介导宿主细胞对HSV-1反应最重要的TLR之一,其存在于中枢神经系统中小胶质细胞和星形胶质细胞的表面[43]。TLR-2通过髓样分化因子88 (myeloid differentiation factor 88, MyD88)或含toll白介素1受体域衔接因子蛋白(toll-interleukin 1 receptor domain containing adaptor protein, TIRAP)依赖性级联反应,激活下游DNA结合蛋白(如NF- κ B),从而增加了各种白介素(如IL-6)和组织坏死因子(如TNF- α)的转录[44-45]。研究表明,使用阿昔洛韦治疗时,病毒复制被阻止,但HSV-1导致的神经损伤并未受到阻止,肿瘤坏死因子激活可能是一个潜在的损伤因素[46]。Kurt-Jones等[47]研究发现,在HSV-1感染时虽然TLR-2缺陷型小鼠的细胞因子和趋化因子(单核细胞趋化蛋白1)产生减少,但死亡率、炎症性脑损伤、部分或全部瘫痪及癫痫的发生率均有下降。另一方面,TLR-2可以在HSV-1引起的免疫应答中诱导IL-15基因转录[48]。IL-15和IL-21通过诱导原始和记忆CD8+T细胞的增殖来抑制病毒的复制和传播[49]。CD8+T细胞活化会导致病毒感染细胞的靶向破坏,这将会产生局部的神经损伤[50]

细胞毒性T细胞(cytotoxic T lymphocyte, CTL)是CD8+T细胞中发挥重要作用的亚群。Bachmann等[29]通过分析HSE患者脑细胞的凋亡途径,发现病毒感染的细胞死于半胱天冬酶介导的凋亡,最有可能是由CTL释放的颗粒酶B所诱导的[51]。此外,凋亡的另一个机制可能涉及CD8+T细胞表面表达的Fas配体(FasL)与存在于病毒感染细胞表面的Fas的结合[52]。Fas/FasL通路特别是在杀死病原体感染的靶细胞过程中起到关键作用[53]。虽然Fas通常不在中枢神经系统的细胞上表达,但是可在炎症部位的少突胶质细胞中被诱导表达,导致这些细胞易受FasL诱导而死亡[54]。在HSV-1感染中,FasL消除了HSV-1诱导的野生型小鼠小胶质细胞的活化和炎症反应,而Fas或FasL的缺乏会导致单核细胞和小胶质细胞活化更为明显,也增强了这些细胞向促炎性M1表型的分化。这表明Fas/FasL通路也与过度的神经炎症反应相关[55]

4 总结与展望

HSE是散发性病毒性脑炎最常见的类型,且其可能导致较为严重的不良预后,因此HSE的临床早期诊断与介入治疗尤为重要[56]。尽管阿昔洛韦作为HSE的一线治疗药物能够大大降低患者的死亡率[57],但是部分患者预后依然较差,也有患者伴有神经系统后遗症[58-59]。HSE患者脑损伤主要是由病毒破坏和过度的炎症反应引起,故有学者探究使用激素类药物对预后进行干预。虽然宿主免疫系统的反应会导致组织损伤,但它对抑制病毒传播和复制也至关重要。皮质类固醇因具有有效的抗炎和免疫调节作用,在理论上可能会促进病毒复制,但动物实验表明阿昔洛韦联合激素治疗并不会增加病毒载量[60]。一项对使用阿昔洛韦治疗的HSE患者进行的非随机回顾性研究显示,阿昔洛韦治疗中加入皮质类固醇可能与改善预后有关[61]。未来需要进一步的研究以确定宿主免疫系统在中枢神经损伤中所起的具体作用,探究其损害机制,这有助于指导临床中激素的使用,确保在不增加病毒载量的同时控制过度的炎症反应。加深对宿主免疫在HSV致病性中作用的理解,可能对减轻HSE的长期后遗症具有重要意义,也有助于发现新型靶点以指导未来小分子抗病毒药物的研究。

参考文献
[1]
Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, Stahl JP, Mailles A, Drebot M, Rupprecht CE, Yoder J, Cope JR, Wilson MR, Whitley RJ, Sullivan J, Granerod J, Jones C, Eastwood K, Ward KN, Durrheim DN, Solbrig MV, Guo-Dong L, Glaser CA, Sheriff H, Brown D, Farnon E, Messenger S, Paterson B, Soldatos A, Roy S, Visvesvara G, Beach M, Nasci R, Pertowski C, Schmid S, Rascoe L, Montgomery J, Tong S, Breiman R, Franka R, Keuhnert M, Angulo F, Cherry J. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium[J]. Clin Infect Dis, 2013, 7(8): 1114-1128.
[2]
Gnann JW, Whitley RJ. Herpes simplex encephalitis: an update an update[J]. Curr Infect Dis Rep, 19(3): 13. [DOI]
[3]
Whitley RJ, Gnann JW. Viral encephalitis: familiar infections and emerging pathogens[J]. Lancet, 2002, 359(9305): 507-513. [DOI]
[4]
Whitley RJ, Corey L, Arvin A, Lakeman FD, Sumaya CV, Wright PF, Dunkle LM, Steele RW, Soong SJ, Nahmias AJ, Alford CA, Powell DA, Joaquin VS, Benton J, Hutto C, Caddell G, Snead O, Brady M, Conner J. Changing presentation of herpes simplex virus infection in neonates[J]. J Infect Dis, 1988, 158(1): 109-116. [DOI]
[5]
Kieff ED, Bachenheimer SL, Roizman B. Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2[J]. J Virol, 1971, 8(2): 125-132. [DOI]
[6]
Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency[J]. FEMS Microbiol Rev, 2012, 36(3): 684. [DOI]
[7]
Preston CM. Repression of viral transcription during herpes simplex virus latency[J]. J Gen Virol, 2000, 81(Pt 1): 1-19.
[8]
Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV-1, an update[J]. Virol J, 2016, 13: 38. [DOI]
[9]
Suazo PA, Ibañez FJ, Retamal-Díaz AR, Paz-Fiblas M V, Bueno SM, Kalergis AM, González PA. Evasion of early antiviral responses by herpes simplex viruses[J]. Mediators Inflamm, 2015, 2015: 593757. [DOI]
[10]
Davis LE, Johnson RT. An explanation for the localization of herpes simplex encephalitis?[J]. Ann Neurol, 1979, 5(1): 2-5. [DOI]
[11]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820. [DOI]
[12]
Kielian T. Overview of toll-like receptors in the CNS[J]. Curr Top Microbiol Immunol.
[13]
Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus[J]. J Immunol, 2005, 175(7): 4189-4193. [DOI]
[14]
Aravalli RN, Hu S, Lokensgard JR. Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia[J]. J Neuroinflammation, 2007, 4: 11. [DOI]
[15]
Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells[J]. J Exp Med, 2003, 198(3): 513-520. [DOI]
[16]
Rasmussen SB, Jensen SB, Nielsen C, Quartin E, Kato H, Chen ZJ, Silverman RH, Akira S, Paludan SR. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible genelike receptors, which synergize to induce type I interferon production[J]. J Gen Virol, 2009, 90(1): 74-78. [DOI]
[17]
Schaeffer J, Burch N, Björnsson Y, Kishimoto A, Müller M, Lake R, Lu P, Sutphen S. TLR3 deficiency in patients with herpes simplex encephalitis[J]. Science, 2007, 317(5844): 1518-1522. [DOI]
[18]
Wang X, Majumdar T, Kessler P, Ozhegov E, Zhang Y, Chattopadhyay S, Barik S, Sen GC. STING requires the adaptor TRIF to trigger innate immune responses to microbial infection[J]. Cell Host Microbe, 2016, 20(3): 329-341. [DOI]
[19]
Reinert LS, Lopušná K, Winther H, Sun C, Thomsen MK, Nandakumar R, Mogensen TH, Meyer M, Vægter C, Nyengaard JR, Fitzgerald KA, Paludan SR. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS[J]. Nat Commun, 2016, 7: 13348. [DOI]
[20]
Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects[J]. Science, 2013, 341(6152): 1390-1394. [DOI]
[21]
Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling[J]. Mol Cell, 2014, 54(2): 289-296. [DOI]
[22]
Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG. IFI16 is an innate immune sensor for intracellular DNA[J]. Nat Immunol, 2010, 11(11): 997. [DOI]
[23]
Sadler AJ, Williams BR. Interferon-inducible antiviral effectors[J]. Nat Rev Immunol, 2008, 8(7): 559-568. [DOI]
[24]
Sciammas R, Kodukula P, Tang Q, Hendricks RL, Bluestone JA. T cell receptor- γ/δ cells protect mice from herpes simplex virus type 1-induced lethal encephalitis[J]. J Exp Med, 1997, 185(11): 1969-1975. [DOI]
[25]
Sobel RA, Collins AB, Colvin RB, Bhan AK. The in situ cellular immune response in acute herpes simplex encephalitis[J]. Am J Pathol, 1986, 125(2): 332-338.
[26]
Marques CP, Cheeran MCJ, Palmquist JM, Hu S, Urban SL, Lokensgard JR. Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis[J]. J Immunol, 2008, 181(9): 6417-6426. [DOI]
[27]
Geiger KD, Nash TC, Sawyer S, Krahl T, Patstone G, Reed JC, Krajewski S, Dalton D, Buchmeier MJ, Sarvetnick N. Interferon-gamma protects against herpes simplex virus type 1-mediated neuronal death[J]. Virology, 1997, 238(2): 189-197. [DOI]
[28]
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon- γ : an overview of signals, mechanisms and functions[J]. J Leukoc Biol, 2004, 75(2): 163-89. [DOI]
[29]
Bachmann MF, Barner M, Viola A, Kopf M. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection[J]. Eur J Immunol, 1999, 29(1): 291-299. [DOI]
[30]
Baringer JR, Pisani P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction[J]. Ann Neurol, 1994, 36(6): 823-829. [DOI]
[31]
Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL. CD8 (+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons[J]. J Exp Med, 2000, 191(9): 1459-1466. [DOI]
[32]
Ariotti S, Beltman JB, Chodaczek G, Hoekstra ME, Van Beek AE, Gomez-Eerland R, Ritsma L, Van Rheenen J, Marée AFM, Zal T, De Boer RJ, Haanen JBAG, Schumacher TN. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19739-19744. [DOI]
[33]
Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. Resident memory CD8 t cells trigger protective innate and adaptive immune responses[J]. Science, 2014, 346(6205): 98-101. [DOI]
[34]
Hoshino Y, Pesnicak L, Cohen JI, Straus SE. Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells[J]. J Virol, 2007, 81(15): 8157-8164. [DOI]
[35]
Derfuss T, Segerer S, Herberger S, Sinicina I, Hüfner K, Ebelt K, Knaus HG, Steiner I, Meinl E, Dornmair K, Arbusow V, Strupp M, Brandt T, Theil D. Presence of HSV-1 immediate early genes and clonally expanded T-cells with a memory effector phenotype in human trigeminal ganglia[J]. Brain Pathol, 2007, 17(4): 389-398. [DOI]
[36]
Boeren M, Meysman P, Laukens K, Ponsaerts P, Ogunjimi B, Delputte P. T cell immunity in HSV-1-and VZV-infected neural ganglia[J]. Trends Microbiol, 2023, 31(1): 51-61. [DOI]
[37]
Rajasagi NK, Kassim SH, Kollias CM, Zhao X, Chervenak R, Jennings SR. CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1[J]. J Virol, 2009, 83(10): 5256-5268. [DOI]
[38]
Jennings SR, Bonneau RH, Smith PM, Wolcott RM, Chervenak R. CD4-positive T lymphocytes are required for the generation of the primary but not the secondary CD8-positive cytolytic T lymphocyte response to herpes simplex virus in C57BL/6 mice[J]. Cell Immunol, 1991, 133(1): 234-252. [DOI]
[39]
Coles RM, Mueller SN, Heath WR, Carbone FR, Brooks AG. Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1[J]. J Immunol, 2002, 168(2): 834-838. [DOI]
[40]
Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, Belz GT. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity[J]. Nat Immunol, 2004, 5(11): 1143-1148. [DOI]
[41]
Beland JL, Sobel RA, Adler H, Del-Pan NC, Rimm IJ. B cell-deficient mice have increased susceptibility to HSV-1 encephalomyelitis and mortality[J]. J Neuroimmunol, 1999, 94(1/2): 122-126.
[42]
Bergmann CC, Ramakrishna C, Kornacki M, Stohlman SA. Impaired T cell immunity in B cell-deficient mice following viral central nervous system infection[J]. J Immunol, 2001, 167(3): 1575-1583. [DOI]
[43]
Kielian T. Toll-like receptors in central nervous system glial inflammation and homeostasis[J]. J Neurosci Res, 2006, 83(5): 711-730. [DOI]
[44]
O'Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling[J]. Nat Rev Immunol, 2007, 7(5): 353-364. [DOI]
[45]
Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4[J]. Nature, 2002, 420(6913): 324-329. [DOI]
[46]
Rybak-Wolf A, Wyler E, Pentimalli TM, Legnini I, Oliveras Martinez A, Glažar P, Loewa A, Kim SJ, Kaufer BB, Woehler A, Landthaler M, Rajewsky N. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids[J]. Nat Microbiol, 2023, 8(7): 1252-1266. [DOI]
[47]
Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis[J]. Proc Natl Acad Sci U S A, 2004, 101(5): 1315-1320. [DOI]
[48]
Ahmad R, El Bassam S, Cordeiro P, Menezes J. Requirement of TLR2-mediated signaling for the induction of IL-15 gene expression in human monocytic cells by HSV-1[J]. Blood, 2008, 112(6): 2360-2368. [DOI]
[49]
Rodrigues L, Nandakumar S, Bonorino C, Rouse BT, Kumaraguru U. IL-21 and IL-15 cytokine DNA augments HSV specific effector and memory CD8+ T cell response[J]. Mol Immunol, 2009, 46(7): 1494-1504. [DOI]
[50]
Anglen CS, Truckenmiller ME, Schell TD, Bonneau RH. The dual role of CD8+ T lymphocytes in the development of stress-induced herpes simplex encephalitis[J]. J Neuroimmunol, 2003, 140(1/2): 13-27.
[51]
Laukoter S, Rauschka H, Tröscher AR, Köck U, Saji E, Jellinger K, Lassmann H, Bauer J. Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis[J]. Acta Neuropathol, 2017, 133(4): 613. [DOI]
[52]
Sabri F, Granath F, Hjalmarsson A, Aurelius E, Sköldenberg B. Modulation of sFas indicates apoptosis in human herpes simplex encephalitis[J]. J Neuroimmunol, 2006, 171(1/2): 171-176.
[53]
Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ. The Fas/FADD death domain complex structure unravels signaling by receptor clustering[J]. Nature, 2009, 457(7232): 1019. [DOI]
[54]
Mc Guire C, Volckaert T, Wolke U, Sze M, de Rycke R, Waisman A, Prinz M, Beyaert R, Pasparakis M, van Loo G. Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination[J]. J Immunol, 2010, 185(12): 7646-7653. [DOI]
[55]
Krzyzowska M, Kowalczyk A, Skulska K, Thörn K, Eriksson K. Fas/fasl contributes to HSV-1 brain infection and neuroinflammation[J]. Front Immunol, 2021, 12: 714821. [DOI]
[56]
朱坤, 林可, 张昊澄, 艾静文, 张文宏. 病毒性脑(膜)炎精确诊断的研究进展[J]. 微生物与感染, 2023, 18(6): 370-377. [DOI]
[57]
Whitley RJ, Alford CA, Hirsch MS, Schooley RT, Luby JP, Aoki FY, Hanley D, Nahmias AJ, Soong SJ. Vidarabine versus acyclovir therapy in herpes simplex encephalitis[J]. N Engl J Med, 314(3): 144-149. [DOI]
[58]
Sili U, Kaya A, Mert A, Ozaras R, Midilli K, Albayram S, Kenangil G, Demirci O, Kapmaz M, Yasar KK, Sehnaz OA, Kayaaslan BU, Yilmaz MO. Herpes simplex virus encephalitis: clinical manifestations, diagnosis and outcome in 106 adult patients[J]. J Clin Viro, 60(2): 112-118.
[59]
Stahl JP, Mailles A, De Broucker T. Herpes simplex encephalitis and management of acyclovir in encephalitis patients in France[J]. Epidemiol Infect, 2012, 140(2): 372-381. [DOI]
[60]
Meyding-Lamadé UK, Oberlinner C, Rau PR, Seyfer S, Heiland S, Sellner J, Wildemann BT, Lamadé WR. Experimental herpes simplex virus encephalitis: a combination therapy of acyclovir and glucocorticoids reduces long-term magnetic resonance imaging abnormalities[J]. J Neurovirol, 2003, 9(1): 118-125. [DOI]
[61]
Kamei S, Sekizawa T, Shiota H, Mizutani T, Itoyama Y, Takasu T, Morishima T, Hirayanagi K. Evaluation of combination therapy using aciclovir and corticosteroid in adult patients with herpes simplex virus encephalitis[J]. J Neurol Neurosurg Psychiatry, 76(11): 1544. [DOI]

文章信息

薛荃璘, 林可, 仇超, 张文宏, 艾静文
XUE Quanlin, LIN Ke, QIU Chao, ZHANG Wenhong, AI Jingwen
单纯疱疹病毒脑炎临床免疫特征前沿总结
Frontiers in clinical immunological characteristics of herpes simplex virus encephalitis
微生物与感染, 2024, 19(1): 58-64.
Journal of Microbes and Infections, 2024, 19(1): 58-64.
通信作者
艾静文
E-mail:jingwenai1990@126.com
基金项目
国家自然科学基金(82002141)

工作空间