基于VSV载体的新冠假病毒文库构建及免疫逃逸株筛选研究

曹高杰 许晨晖 王琳茜 柴柯柯 吴蓓蓓

微生物与感染 ›› 2025, Vol. 20 ›› Issue (3) : 139-149.

欢迎访问《微生物与感染》官方网站,今天是
微生物与感染 ›› 2025, Vol. 20 ›› Issue (3) : 139-149.
论著

基于VSV载体的新冠假病毒文库构建及免疫逃逸株筛选研究

  • 曹高杰1,许晨晖1,王琳茜2,柴柯柯1,吴蓓蓓3
作者信息 +

Research on the Construction of a SARS-CoV-2 Pseudovirus Library Based on the VSV Vector and the Screening of Immune Escape Strains

Author information +
文章历史 +

摘要

本研究旨在构建基于水疱性口炎病毒(VSV)载体的新型冠状病毒S蛋白假病毒突变文库,以筛选潜在的免疫逃逸株并解析其关键突变位点,为疫苗研发和疫情防控提供科学依据。采用随机突变试剂盒对新冠病毒Wuhan株S蛋白的受体结合域(RBD)进行随机突变,构建假病毒质粒文库,并利用VSV载体实现病毒拯救。通过血清加压和有限稀释法筛选免疫逃逸株,并对其突变位点进行测序验证。结果显示成功构建新冠假病毒质粒文库,阳性率高达98%。筛选出携带E484K、F486I、G339S、S477R等单突变,以及E484K+K444Q、E484K+K462R等双突变的免疫逃逸株。部分逃逸株对中和血清表现出显著的抵抗能力,其中E484K单突变及E484K相关双突变株的中和效价显著下降。本研究证实通过构建新冠假病毒突变文库成功筛选出具有免疫逃逸能力的变异株的可行性,并揭示其潜在的逃逸机制和流行特征。这些发现为理解新冠病毒的变异趋势提供了重要参考,并为疫苗研发和疫情防控策略的优化提供了科学支持。

Abstract

This study aims to construct a pseudovirus mutation library of the SARS-CoV-2 spike (S) protein based on the vesicular stomatitis virus (VSV) vector system, in order to screen potential immune escape variants and identify critical mutation sites, thereby providing scientific evidence for vaccine development and epidemic prevention and control. A random mutagenesis kit was employed to introduce random mutations into the receptor-binding domain (RBD) of the Wuhan strain S protein, followed by the construction of a pseudovirus plasmid library and subsequent virus rescue using the VSV vector system. Immune escape variants were screened through serum pressure and limited dilution methods, with their mutation sites validated by sequencing. Results demonstrated the successful construction of the SARS-CoV-2 pseudovirus plasmid library, achieving a positive rate of 98%. Immune escape variants carrying single mutations such as E484K, F486I, G339S, and S477R, as well as double mutations including E484K+K444Q and E484K+K462R, were identified. Some escape variants exhibited significant resistance to neutralizing sera, with a marked reduction in neutralizing titers observed for the E484K single mutant and E484K-related double mutants. This study confirms the feasibility of screening immune escape variants through the construction of a SARS-CoV-2 pseudovirus mutation library and elucidates their potential escape mechanisms and epidemic characteristics. These findings provide important insights into understanding the evolutionary trends of SARS-CoV-2 and offer scientific support for optimizing vaccine development and epidemic prevention strategies.

关键词

新型冠状病毒 / 免疫逃逸 / 随机突变文库 / 突变位点 / 疫苗研发

Key words

SARS-CoV-2 / Immune escape / ?Random mutation library / Mutation sites / Vaccine development

引用本文

导出引用
曹高杰 许晨晖 王琳茜 柴柯柯 吴蓓蓓. 基于VSV载体的新冠假病毒文库构建及免疫逃逸株筛选研究[J]. 微生物与感染. 2025, 20(3): 139-149
Research on the Construction of a SARS-CoV-2 Pseudovirus Library Based on the VSV Vector and the Screening of Immune Escape Strains[J]. Journal of Microbes and Infections. 2025, 20(3): 139-149
中图分类号: R373   

参考文献

[1]屠鸿薇, 甘萍, 钟若曦, 庄雅丽, 朱杰民, 何昌云, 张萌, 陈秋霞, 宋铁.新型冠状病毒传播途径及个人防护措施研究进展[J].中国公共卫生, 2022, 38(8):1011-1017 [2]Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team.A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20; 382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24. PMID: 31978945; PMCID: PMC7092803.[J].N Engl J Med, 2020, 382(8):727-733 [3]Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, Zheng M, Yang B, Chen Z.An overview of COVID-19. J Zhejiang Univ Sci B. 2020 May; 21(5):343-360. doi: 10.1631/jzus.B2000083. Epub 2020 May 8. PMID: 32425000; PMCID: PMC7205601.[J].J Zhejiang Univ Sci B., 2020, 21(5):343-360 [4]World Health Organization 2023 data.who.int, WHO Coronavirus (COVID-19) dashboard > Cases [Dashboard]. https://data.who.int/dashboards/covid19/cases. [5]World Health Organization.Tracking SARS-CoV-2 variants [EB/OL]. (n.d.). https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. [6]Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY.Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021 Apr; 592(7852):116-121. doi: 10.1038/s41586-020-2895-3. Epub 2020 Oct 26. Erratum in: Nature. 2021 Jul; 595(7865):E1. doi: 10.1038/s41586-021-03657-2. PMID: 33106671; PMCID: PMC8158177.[J].Nature, 2021, 592(7852):116-121 [7]World Health Organization.Weekly Epidemiological Update on COVID-19. [EB/OL].https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---27-july-2021. [8]Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A, Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D, Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell BT, Louren?o J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ, Bhiman JN, Williamson C, de Oliveira T.Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021 Apr; 592(7854):438-443. doi: 10.1038/s41586-021-03402-9. Epub 2021 Mar 9. PMID: 33690265.[J].Nature, 2021, 592(7854):438-443 [9]季倩婷, 尚浩天, 施泽灿, 施泽灿, 郑天宇, 姚佳薇, 姜世勃, 张娜茹.新型冠状病毒疫苗的研究策略及应对奥密克戎等变异株的挑战[J].病毒学报, 2022, 38(04):937-48 [10]Xinhua Chen, Xufang Bai, Xinghui Chen, Nan Zheng, Juan Yang, Juanjuan Zhang, Hongjie Yu.Modeling the Prediction on the Efficacy of a Homologous Third Dose of CoronaVac Against SARS-CoV-2 Omicron BA1,BA.2,BA.2.12.1,and BA.45 — China,2020–2021[J].China CDC Weekly, 2023, 5(5):103-107 [11]Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA, Cai H, Sarkar R, Chen W, Cutler M, Cooper D, Weaver SC, Muik A, Sahin U, Jansen KU, Xie X, Dormitzer PR, Shi PY.Neutralizing Activity of BNT162b2-Elicited Serum. N Engl J Med. 2021 Apr 15; 384(15):1466-1468. doi: 10.1056/NEJMc2102017. Epub 2021 Mar 8. PMID: 33684280; PMCID: PMC7944950.[J].N Engl J Med, 2021, 384(15):1466-1468 [12]Nie, Z., Liu, X., Chen, J.?et al.?A unified evolution-driven deep learning framework for virus variation driver prediction.?Nat Mach Intell?7, 131–144 (2025).[J].Nature Machine Intelligence, 2025, :131-144 [13]Zhang, Lizhou et al.“Cytoplasmic Tail Truncation Stabilizes S1-S2 Association and Enhances S Protein Incorporation into SARS-CoV-2 Pseudovirions.”?Journal of virology?vol. 97, 3 (2023): e0165022.[J].Journal of virology?vol., 2023, 97(3):- [14]陈珏, 黄佳敏, 燕天鹤, 等.随机突变文库构建与筛选研究进展[J].生物工程学报, 2021, 37(1):163-177 [15]Li, Hongyue et al.“Establishment of replication-competent vesicular stomatitis virus-based recombinant viruses suitable for SARS-CoV-2 entry and neutralization assays.”?Emerging microbes & infections?vol. 9, 1 (2020): 2269-2277.[J].Emerging microbes & infections?vol, 2020, 9(1):2269-2277 [16]石文军, 王群, 魏晓红, 等.表达绿色荧光水泡性口炎复制缺陷重组病毒株的构建[J].中国口岸科学技术, 2023, 5(S2):38-43 [17]卢建博, 郑文铝, 余云舟, 等.重组水疱性口炎病毒载体病毒包装体系的建立及优化[J].生物技术通讯, 2018, 29(02):183-188 [18]Salazar-García, Marcela et al.“Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019.”?Frontiers in microbiology?vol. 12 817200. 14 Jan. 2022.[J].Frontiers in microbiology?vol., 2022, :- [19]Li, C., Hatta, M., Burke, D.?et al.?Selection of antigenically advanced variants of seasonal influenza viruses.?Nat Microbiol?1, 16058 (2016).[J].Nat Microbiol, 2016, :- [20]Nie, J., Li, Q., Wu, J.?et al.?Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay.?Nat Protoc?15, 3699–3715 (2020).[J].Nat Protoc, 2020, :3699-3715 [21]Reed, L.J., Muench, H., 1938. A simple method of estimating fifty per cent endpoint. Am. J. Hyg. 27, 493–497.[J].Am. J. Hyg., , :493-497 [22]Lei C, Yang J, Hu J, Sun X.On the Calculation of TCID50?for Quantitation of Virus Infectivity. Virol Sin. 2021 Feb; 36(1):141-144.[J].Virol Sin, 2021, 36(1):141-144 [23]Pondé, R A A.“Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern.”?Virology?vol. 572 (2022): 44-54.[J].Virology?vol., 2022, 572:44-54 [24]Jangra, Sonia et al.“SARS-CoV-2 spike E484K mutation reduces antibody neutralisation.”?The Lancet. Microbe?vol. 2, 7 (2021): e283-e284.[J].The Lancet. Microbe?vol, 2021, 2(7):e283-e284 [25]Ferrareze, Patrícia Aline Gr?hs et al.“E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil.”?Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases?vol. 93 (2021): 104941.[J].Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases?vol, 2021, 93:- [26]Cao, Y., Jian, F., Wang, J.?et al.?Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution.?Nature?614, 521–529 (2023).[J].Nature, 2023, :521-529

基金

浙江省部共建项目

Accesses

Citation

Detail

段落导航
相关文章

/