Shroom2是一种肌动蛋白结合蛋白,参与细胞运动调节和肌动蛋白细胞骨架重塑。而日本血吸虫虫卵可引发肉芽肿形成,在虫卵周围形成有组织的免疫聚集体。我们偶然发现,Shroom2缺失的小鼠在感染血吸虫后死亡率远高于野生型小鼠,故本研究旨在研究Shroom2敲除小鼠在感染日本血吸虫后的病程进展,以揭示Shroom2基因在血吸虫感染和宿主应对虫卵肉芽肿形成免疫反应中的潜在作用。我们利用CRISPR/Cas9技术构建了Shroom2基因敲除(KO)小鼠,将C57BL/6野生型(WT)和Shroom2 KO小鼠分别感染日本血吸虫,每只小鼠采用腹部贴片法感染(30±2)条日本血吸虫尾蚴。感染后每日监测小鼠状态,记录死亡数量,并在感染第5、7周后安乐死小鼠,取外周血进行血常规分析;苏木素-伊红(HE)染色观察肝组织病理变化。结果显示Shroom2基因敲除小鼠在感染血吸虫后的急性期内出现了显著的死亡率增加,并伴有肝脏严重病理变化和血常规指标的异常。这表明Shroom2基因在调节宿主免疫反应中起关键作用,其缺失可能导致宿主对病原体的易感性增加,从而加速疾病的进程。
Abstract
Shroom2 is an actin-binding protein involved in the regulation of cell motility and actin cytoskeleton remodeling. Schistosome eggs can induce granuloma formation, leading to organized immune aggregates around the eggs. We unexpectedly observed that Shroom2-deficient mice exhibited a significantly higher mortality rate after infection with Schistosoma japonicum compared to wild-type mice. This study aims to investigate the disease progression in Shroom2 knockout mice after infection with Schistosoma japonicum, revealing the potential role of the Shroom2 gene in the immune response to schistosome infection and granuloma formation around the eggs. We used CRISPR/Cas9 technology to generate Shroom2 knockout (KO) mice. Both C57BL/6 wild-type (WT) and Shroom2 KO mice were infected with Schistosoma japonicum, with each mouse receiving an infection of approximately 30±2 cercariae via abdominal skin exposure. The mice were monitored daily, and the number of deaths was recorded. At 5 and 7 weeks post-infection, mice were sacrificed for blood routine analysis and liver histopathology with hematoxylin-eosin (HE) staining. Shroom2 knockout mice showed a significant increase in mortality during the acute phase of schistosome infection, accompanied by severe liver pathology and abnormal blood parameters. These findings suggest that the Shroom2 gene plays a critical role in regulating the host immune response, and its deficiency may increase susceptibility to pathogens, accelerating disease progression.
关键词
Shroom2 /
免疫缺陷 /
日本血吸虫
Key words
Shroom2 /
immunodeficiency /
Schistosoma japonicum
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
Schiaffino MV, Bassi MT, Rugarli EI, Renieri A, Galli L, Ballabio A. Cloning of a human homologue of the Xenopus laevis APX gene from the ocular albinism type 1 critical region. Hum Mol Genet. 1995;4 3:373-82; doi: 10.1093/hmg/4.3.373. https://www.ncbi.nlm.nih.gov/pubmed/7795590.
2. Etournay R, Zwaenepoel I, Perfettini I, Legrain P, Petit C, El-Amraoui A. Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J Cell Sci. 2007;120 Pt 16:2838-50; doi: 10.1242/jcs.002568. https://www.ncbi.nlm.nih.gov/pubmed/17666436.
3. Dietz ML, Bernaciak TM, Vendetti F, Kielec JM, Hildebrand JD. Differential actin-dependent localization modulates the evolutionarily conserved activity of Shroom family proteins. J Biol Chem. 2006;281 29:20542-54; doi: 10.1074/jbc.M512463200. https://www.ncbi.nlm.nih.gov/pubmed/16684770.
4. Farber MJ, Rizaldy R, Hildebrand JD. Shroom2 regulates contractility to control endothelial morphogenesis. Mol Biol Cell. 2011;22 6:795-805; doi: 10.1091/mbc.E10-06-0505. https://www.ncbi.nlm.nih.gov/pubmed/21248203.
5. Yuan J, Chen L, Xiao J, Qi XK, Zhang J, Li X, et al. SHROOM2 inhibits tumor metastasis through RhoA-ROCK pathway-dependent and -independent mechanisms in nasopharyngeal carcinoma. Cell Death Dis. 2019;10 2:58; doi: 10.1038/s41419-019-1325-7. https://www.ncbi.nlm.nih.gov/pubmed/30683844.
6. Fairbank PD, Lee C, Ellis A, Hildebrand JD, Gross JM, Wallingford JB. Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium. Development. 2006;133 20:4109-18; doi: 10.1242/dev.02563. https://www.ncbi.nlm.nih.gov/pubmed/16987870.
7. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383 9936:2253-64; doi: 10.1016/S0140-6736(13)61949-2. https://www.ncbi.nlm.nih.gov/pubmed/24698483.
8. Schistosomiasis: number of people treated worldwide in 2013. Wkly Epidemiol Rec. 2015;90 5:25-32. https://www.ncbi.nlm.nih.gov/pubmed/25638822.
9. Xie H, Chen D, Li L, Yu X, Wu C, Gu H, et al. Immune response of gammadeltaT cells in Schistosome japonicum-infected C57BL/6 mouse liver. Parasite Immunol. 2014;36 12:658-67; doi: 10.1111/pim.12135. https://www.ncbi.nlm.nih.gov/pubmed/25130072.
10. Rumbley CA, Zekavat SA, Sugaya H, Perrin PJ, Ramadan MA, Phillips SM. The schistosome granuloma: characterization of lymphocyte migration, activation, and cytokine production. J Immunol. 1998;161 8:4129-37. https://www.ncbi.nlm.nih.gov/pubmed/9780185.
11. da Silva Filomeno CE, Costa-Silva M, Correa CL, Neves RH, Mandarim-de-Lacerda CA, Machado-Silva JR. The acute schistosomiasis mansoni ameliorates metabolic syndrome in the C57BL/6 mouse model. Exp Parasitol. 2020;212:107889; doi: 10.1016/j.exppara.2020.107889. https://www.ncbi.nlm.nih.gov/pubmed/32222527.
12. Hams E, Aviello G, Fallon PG. The schistosoma granuloma: friend or foe? Front Immunol. 2013;4:89; doi: 10.3389/fimmu.2013.00089. https://www.ncbi.nlm.nih.gov/pubmed/23596444.
13. Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 2012;44 7:770-6; doi: 10.1038/ng.2293. https://www.ncbi.nlm.nih.gov/pubmed/22634755.
14. Ma YL, Cong L, Yin L, Chen XP. [Dynamic changes in professional and non-professional antigen presenting cells in the spleen from mice infected with Schistosoma japonicum]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2013;31 4:298-302. https://www.ncbi.nlm.nih.gov/pubmed/24812882.